First Principles Simulation of the Dynamics of Transient Warm Dense Matter during the Formation of Ultrashort Laser Pulse induced Damage using the Particle-in-Cell Method

被引:1
作者
Russell, Alex M. [1 ]
Schumacher, Douglass W. [1 ]
机构
[1] Ohio State Univ, 191 W Woodruff Ave, Columbus, OH 43210 USA
来源
LASER-INDUCED DAMAGE IN OPTICAL MATERIALS 2017 | 2017年 / 10447卷
关键词
Laser Damage; Warm Dense Matter; Particle in Cell; Simulation; Ultrashort Pulse; CONDUCTIVITY;
D O I
10.1117/12.2280543
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Understanding the warm dense matter (WDM) state is of fundamental importance in the modeling of femtosecond laser damage because laser electron coupling and subsequent electron lattice coupling can rapidly increase the material temperature at the laser focal region to on the order of an eV, producing WDM not well described by standard liquid and solid equations of state. We have developed a simulation approach based on the particle-in-cell (PIC) method capable of modeling the formation of warm dense matter via an ultrashort pulse on a mesoscopic scale by utilizing two temperature interionic potentials. The dynamics are simulated via two sequential stages, the first of which models the femtosecond laser-target interaction directly by solving Maxwell's equations and the Lorentz force law, along with a sophisticated scheme for properly modeling the short range collisionality of particles. The second simultaneously models electron diffusion and electron-ion relaxation via the two temperature model and material ablation using the PIC pair potential model. Our simulation enables us to calculate the temporal and spatial dynamics of particles over the entirety of the laser affected material and to determine a crater profile which can be used to compare to experimental results.
引用
收藏
页数:10
相关论文
共 23 条
[1]  
Akhiezer A., 1973, J EXPT THEORETICAL P, V38, P167
[2]  
Chowdhury E., 2015, SPIE P, V9632
[3]   Transient optical response of ultrafast nonequilibrium excited metals: Effects of electron-electron contribution to collisional absorption [J].
Colombier, J. P. ;
Combis, P. ;
Audouard, E. ;
Stoian, R. .
PHYSICAL REVIEW E, 2008, 77 (03)
[4]  
Daniel J.-F., 2016, PHYS REV E, V93
[5]  
Desjarlais MP, 2001, CONTRIB PLASM PHYS, V41, P267, DOI 10.1002/1521-3986(200103)41:2/3<267::AID-CTPP267>3.0.CO
[6]  
2-P
[7]   Static and dynamic conductivity of warm dense matter within a density-functional approach: Application to aluminum and gold [J].
Dharma-wardana, MWC .
PHYSICAL REVIEW E, 2006, 73 (03) :1-13
[8]  
Doerr D., 2007, THESIS
[9]  
Fletcher LB, 2015, NAT PHOTONICS, V9, P274, DOI [10.1038/nphoton.2015.41, 10.1038/NPHOTON.2015.41]
[10]   Matter under extreme conditions experiments at the Linac Coherent Light Source [J].
Glenzer, S. H. ;
Fletcher, L. B. ;
Galtier, E. ;
Nagler, B. ;
Alonso-Mori, R. ;
Barbrel, B. ;
Brown, S. B. ;
Chapman, D. A. ;
Chen, Z. ;
Curry, C. B. ;
Fiuza, F. ;
Gamboa, E. ;
Gauthier, M. ;
Gericke, D. O. ;
Gleason, A. ;
Goede, S. ;
Granados, E. ;
Heimann, P. ;
Kim, J. ;
Kraus, D. ;
MacDonald, M. J. ;
Mackinnon, A. J. ;
Mishra, R. ;
Ravasio, A. ;
Roedel, C. ;
Sperling, P. ;
Schumaker, W. ;
Tsui, Y. Y. ;
Vorberger, J. ;
Zastrau, U. ;
Fry, A. ;
White, W. E. ;
Hasting, J. B. ;
Lee, H. J. .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2016, 49 (09)