Inertial Chow rings of toric stacks

被引:1
作者
Coleman, Thomas [1 ]
Edidin, Dan [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
COHOMOLOGY;
D O I
10.1007/s00229-017-0982-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For any vector bundle V on a toric Deligne-Mumford stack the formalism of Edidin et al. (Ann K-theory 1(1):85-108, 2016) defines two inertial products and on the Chow group of the inertia stack. We give an explicit presentation for the integral and Chow rings, extending earlier work of Borisov et al. (J Am Math Soc 18(1):193-215, 2005) and Jiang and Tseng (Math Z 264(1):225-248, 2010) in the orbifold Chow ring case, which corresponds to . We also describe an asymptotic product on the rational Chow group of the inertia stack obtained by letting the rank of the bundle V go to infinity.
引用
收藏
页码:341 / 369
页数:29
相关论文
共 11 条
  • [1] Abramovich D, 2008, AM J MATH, V130, P1337
  • [2] [Anonymous], THESIS
  • [3] The orbifold Chow ring of toric Deligne-Mumford stacks
    Borisov, LA
    Chen, L
    Smith, GG
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (01) : 193 - 215
  • [4] A new cohomology theory of orbifold
    Chen, WM
    Ruan, YB
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 248 (01) : 1 - 31
  • [5] Nonabelian localization in equivariant K-theory and Riemann-Roch for quotients
    Edidin, D
    Graham, W
    [J]. ADVANCES IN MATHEMATICS, 2005, 198 (02) : 547 - 582
  • [6] Edidin D, 1998, INVENT MATH, V131, P595, DOI 10.1007/s002220050214
  • [7] A plethora of inertial products
    Edidin, Dan
    Jarvis, Tyler J.
    Kimura, Takashi
    [J]. ANNALS OF K-THEORY, 2016, 1 (01) : 85 - 108
  • [8] LOGARITHMIC TRACE AND ORBIFOLD PRODUCTS
    Edidin, Dan
    Jarvis, Tyler J.
    Kimura, Takashi
    [J]. DUKE MATHEMATICAL JOURNAL, 2010, 153 (03) : 427 - 473
  • [9] González A, 2007, MATH RES LETT, V14, P491
  • [10] Integral Chow Rings of Toric Stacks
    Iwanari, Isamu
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (24) : 4709 - 4725