A Bayesian inference for time series via copula-based Markov chain models

被引:7
作者
Sun, Li-Hsien [1 ]
Lee, Chang-Shang [1 ]
Emura, Takeshi [1 ]
机构
[1] Natl Cent Univ, Grad Inst Stat, Chungli 32001, Taiwan
关键词
Clayton copula; Nonstandardized Student’ s t-distribution; Bayesian inference; Markov chain Monte Carlo; Metropolis-Hastings algorithm;
D O I
10.1080/03610918.2018.1529241
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper studies the nonstandardized Student's t-distribution for fitting serially correlated observations where serial dependence is described by the copula-based Markov chain. Due to the computational difficulty of obtaining maximum likelihood estimates, alternatively, we develop Bayesian inference using the empirical Bayes method through the resampling procedure. We provide the simulations to examine the performance and also analyze the stock price data in empirical studies for illustration.
引用
收藏
页码:2897 / 2913
页数:17
相关论文
共 25 条
[1]  
[Anonymous], 2014, BAYESIAN DATA ANAL, DOI DOI 10.1201/B16018
[2]   Markov chain Monte Carlo in conditionally Gaussian state space models [J].
Carter, CK ;
Kohn, R .
BIOMETRIKA, 1996, 83 (03) :589-601
[3]   Pair trading based on quantile forecasting of smooth transition GARCH models [J].
Chen, Cathy W. S. ;
Wang, Zona ;
Sriboonchitta, Songsak ;
Lee, Sangyeol .
NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2017, 39 :38-55
[4]   Estimation of copula-based semiparametric time series models [J].
Chen, XH ;
Fan, YQ .
JOURNAL OF ECONOMETRICS, 2006, 130 (02) :307-335
[5]   Modeling stock markets' volatility using GARCH models with Normal, Student's t and stable Paretian distributions [J].
Curto, Jose Dias ;
Pinto, Jose Castro ;
Tavares, Goncalo Nuno .
STATISTICAL PAPERS, 2009, 50 (02) :311-321
[6]   COPULAS AND MARKOV-PROCESSES [J].
DARSOW, WF ;
NGUYEN, B ;
OLSEN, ET .
ILLINOIS JOURNAL OF MATHEMATICS, 1992, 36 (04) :600-642
[7]   R routines for performing estimation and statistical process control under copula-based time series models [J].
Emura, Takeshi ;
Long, Ting-Hsuan ;
Sun, Li-Hsien .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (04) :3067-3087
[8]  
Frees EW., 1998, North American Actuarial Journal, V2, P1, DOI DOI 10.1080/10920277.1998.10595667
[9]   Prior distributions for variance parameters in hierarchical models(Comment on an Article by Browne and Draper) [J].
Gelman, Andrew .
BAYESIAN ANALYSIS, 2006, 1 (03) :515-533
[10]   STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES [J].
GEMAN, S ;
GEMAN, D .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) :721-741