A weak Galerkin finite element method for the stokes equations

被引:245
作者
Wang, Junping [1 ]
Ye, Xiu [2 ]
机构
[1] Univ Arkansas, Dept Math, Little Rock, AR 72204 USA
[2] Natl Sci Fdn, Div Math Sci, 4201 Wilson Blvd, Arlington, VA 22230 USA
基金
美国国家科学基金会;
关键词
Weak Galerkin; Finite element methods; The stokes equations; Polyhedral meshes;
D O I
10.1007/s10444-015-9415-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper introduces a weak Galerkin (WG) finite element method for the Stokes equations in the primal velocity-pressure formulation. This WG method is equipped with stable finite elements consisting of usual polynomials of degree ka parts per thousand yen1 for the velocity and polynomials of degree k-1 for the pressure, both are discontinuous. The velocity element is enhanced by polynomials of degree k-1 on the interface of the finite element partition. All the finite element functions are discontinuous for which the usual gradient and divergence operators are implemented as distributions in properly-defined spaces. Optimal-order error estimates are established for the corresponding numerical approximation in various norms. It must be emphasized that the WG finite element method is designed on finite element partitions consisting of arbitrary shape of polygons or polyhedra which are shape regular.
引用
收藏
页码:155 / 174
页数:20
相关论文
共 16 条
[1]  
[Anonymous], 2002, TEXTS APPL MATH
[2]   Unified analysis of discontinuous Galerkin methods for elliptic problems [J].
Arnold, DN ;
Brezzi, F ;
Cockburn, B ;
Marini, LD .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) :1749-1779
[3]   FINITE-ELEMENT METHOD WITH LAGRANGIAN MULTIPLIERS [J].
BABUSKA, I .
NUMERISCHE MATHEMATIK, 1973, 20 (03) :179-192
[4]   Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes [J].
Brezzi, F ;
Lipnikov, K ;
Shashkov, M .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 43 (05) :1872-1896
[5]  
BREZZI F, 1974, REV FR AUTOMAT INFOR, V8, P129
[6]  
Brezzi F., 1991, Mixed and Hybrid Finite Element Methods, V15
[7]  
CIARLET P. G., 2002, Classics in Appl. Math., V40
[8]   ANALYSIS OF HDG METHODS FOR STOKES FLOW [J].
Cockburn, Bernardo ;
Gopalakrishnan, Jayadeep ;
Ngoc Cuong Nguyen ;
Peraire, Jaume ;
Sayas, Francisco-Javier .
MATHEMATICS OF COMPUTATION, 2011, 80 (274) :723-760
[9]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
[10]   BASIC PRINCIPLES OF VIRTUAL ELEMENT METHODS [J].
da Veiga, L. Beirao ;
Brezzi, F. ;
Cangiani, A. ;
Manzini, G. ;
Marini, L. D. ;
Russo, A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2013, 23 (01) :199-214