Inflammation-induced glycolytic switch controls suppressivity of mesenchymal stem cells via STAT1 glycosylation

被引:74
作者
Jitschin, R. [1 ]
Boettcher, M. [1 ]
Saul, D. [1 ]
Lukassen, S. [2 ]
Bruns, H. [1 ]
Loschinski, R. [1 ]
Ekici, A. B. [2 ]
Reis, A. [2 ]
Mackensen, A. [1 ]
Mougiakakos, D. [1 ]
机构
[1] Friedrich Alexander Univ Erlangen Nurnberg, Dept Med Hematol & Oncol 5, D-91054 Erlangen, Germany
[2] Friedrich Alexander Univ Erlangen Nurnberg, Inst Human Genet, D-91054 Erlangen, Germany
关键词
O-GLCNACYLATION; STROMAL CELLS; INTERFERON-GAMMA; IFN-GAMMA; NUTRIENT REGULATION; TRANSCRIPTION; METABOLISM; ACTIVATION; MECHANISMS; PROTEASOME;
D O I
10.1038/s41375-018-0376-6
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Mesenchymal stem cells (MSCs) represent key contributors to tissue homeostasis and promising therapeutics for hyperinflammatory conditions including graft-versus-host disease. Their immunomodulatory effects are controlled by microenvironmental signals. The MSCs' functional response towards inflammatory cues is known as MSC-"licensing" and includes indoleamine 2,3-dioxygenase (IDO) upregulation. MSCs use tryptophan-depleting IDO to suppress T-cells. Increasing evidence suggests that several functions are (co-) determined by the cells' metabolic commitment. MSCs are capable of both, high levels of glycolysis and of oxidative phosphorylation. Although several studies have addressed alterations of the immune regulatory phenotype elicited by inflammatory priming metabolic mechanisms controlling this process remain unknown. We demonstrate that inflammatory MSC-licensing causes metabolic shifts including enhanced glycolysis and increased fatty acid oxidation. Yet, only interfering with glycolysis impacts IDO upregulation and impedes T-cell-suppressivity. We identified the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) 1 pathway as a regulator of both glycolysis and IDO, and show that enhanced glucose turnover is linked to abundant STAT1 glycosylation. Inhibiting the responsible O-acetylglucosamine (O-GlcNAc) transferase abolishes STAT1 activity together with IDO upregulation. Our data suggest that STAT1-O-GlcNAcylation increases its stability towards degradation thus sustaining downstream effects. This pathway could represent a target for interventions aiming to enhance the MSCs' immunoregulatory potency.
引用
收藏
页码:1783 / 1796
页数:14
相关论文
共 61 条
[1]   Glycolysis and glutaminolysis cooperatively control T cell function by limiting metabolite supply to N-glycosylation [J].
Araujo, Lindsey ;
Khim, Phillip ;
Mkhikian, Haik ;
Mortales, Christie-Lynn ;
Demetriou, Michael .
ELIFE, 2017, 6
[2]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[3]   Mesenchymal Stromal Cells: Sensors and Switchers of Inflammation [J].
Bernardo, Maria Ester ;
Fibbe, Willem E. .
CELL STEM CELL, 2013, 13 (04) :392-402
[4]   Co-operating STAT5 and AKT signaling pathways in chronic myeloid leukemia and mastocytosis: possible new targets of therapy [J].
Bibi, Siham ;
Arslanhan, Melis Dilara ;
Langenfeld, Florent ;
Jeanningros, Sylvie ;
Cerny-Reiterer, Sabine ;
Hadzijusufovic, Emir ;
Tchertanov, Luba ;
Moriggl, Richard ;
Valent, Peter ;
Arock, Michel .
HAEMATOLOGICA, 2014, 99 (03) :417-429
[5]   A little sugar goes a long way: The cell biology of O-GlcNAc [J].
Bond, Michelle R. ;
Hanover, John A. .
JOURNAL OF CELL BIOLOGY, 2015, 208 (07) :869-880
[6]   Expansion of the Gene Ontology knowledgebase and resources [J].
Carbon, S. ;
Dietze, H. ;
Lewis, S. E. ;
Mungall, C. J. ;
Munoz-Torres, M. C. ;
Basu, S. ;
Chisholm, R. L. ;
Dodson, R. J. ;
Fey, P. ;
Thomas, P. D. ;
Mi, H. ;
Muruganujan, A. ;
Huang, X. ;
Poudel, S. ;
Hu, J. C. ;
Aleksander, S. A. ;
McIntosh, B. K. ;
Renfro, D. P. ;
Siegele, D. A. ;
Antonazzo, G. ;
Attrill, H. ;
Brown, N. H. ;
Marygold, S. J. ;
McQuilton, P. ;
Ponting, L. ;
Millburn, G. H. ;
Rey, A. J. ;
Stefancsik, R. ;
Tweedie, S. ;
Falls, K. ;
Schroeder, A. J. ;
Courtot, M. ;
Osumi-Sutherland, D. ;
Parkinson, H. ;
Roncaglia, P. ;
Lovering, R. C. ;
Foulger, R. E. ;
Huntley, R. P. ;
Denny, P. ;
Campbell, N. H. ;
Kramarz, B. ;
Patel, S. ;
Buxton, J. L. ;
Umrao, Z. ;
Deng, A. T. ;
Alrohaif, H. ;
Mitchell, K. ;
Ratnaraj, F. ;
Omer, W. ;
Rodriguez-Lopez, M. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (D1) :D331-D338
[7]   Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J].
Dominici, M. ;
Le Blanc, K. ;
Mueller, I. ;
Slaper-Cortenbach, I. ;
Marini, F. C. ;
Krause, D. S. ;
Deans, R. J. ;
Keating, A. ;
Prockop, D. J. ;
Horwitz, E. M. .
CYTOTHERAPY, 2006, 8 (04) :315-317
[8]   O-GlcNAcylation of STAT5 controls tyrosine phosphorylation and oncogenic transcription in STAT5-dependent malignancies [J].
Freund, P. ;
Kerenyi, M. A. ;
Hager, M. ;
Wagner, T. ;
Wingelhofer, B. ;
Pham, H. T. T. ;
Elabd, M. ;
Han, X. ;
Valent, P. ;
Gouilleux, F. ;
Sexl, V. ;
Kraemer, O. H. ;
Groner, B. ;
Moriggl, R. .
LEUKEMIA, 2017, 31 (10) :2132-2142
[9]   Mesenchymal Stromal Cells: Clinical Challenges and Therapeutic Opportunities [J].
Galipeau, Jacques ;
Sensebe, Luc .
CELL STEM CELL, 2018, 22 (06) :824-833
[10]   Critical Role of Glucose Metabolism in Rheumatoid Arthritis Fibroblast-like Synoviocytes [J].
Garcia-Carbonell, Ricard ;
Divakaruni, Ajit S. ;
Lodi, Alessia ;
Vicente-Suarez, Ildefonso ;
Saha, Arindam ;
Cheroutre, Hilde ;
Boss, Gerry R. ;
Tiziani, Stefano ;
Murphy, Anne N. ;
Guma, Monica .
ARTHRITIS & RHEUMATOLOGY, 2016, 68 (07) :1614-1626