Catalytic Property and Stability of Subnanometer Pt Cluster on Carbon Nanotube in Direct Propane Dehydrogenation

被引:17
作者
Sun, Xiaoying [1 ]
Xue, Jiahui [1 ]
Ren, Yu [2 ]
Li, Xinyu [1 ]
Zhou, Lijing [1 ]
Li, Bo [3 ]
Zhao, Zhen [1 ,2 ]
机构
[1] Shenyang Normal Univ, Coll Chem & Chem Engn, Inst Catalysis Energy & Environm, Shenyang 110034, Liaoning, Peoples R China
[2] China Univ Petr, State Key Lab Heavy Oil Proc, Beijing 102249, Peoples R China
[3] Chinese Acad Sci, Inst Met Res, Shenyang Natl Lab Mat Sci, Shenyang 110016, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
Heterogeneous catalysis; Supported catalysts; Platinum; Density functional calculations; Dehydrogenation;
D O I
10.1002/cjoc.202000415
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Main observation and conclusion The stability of nanosized platinum catalyst in direct propane dehydrogenation reaction is one of most critical challenges, which hinders the further improvements of catalytic performance. The cokes from side reaction covering the active site seriously undermine the catalyst stability. In this work, first principles calculations are performed to explore the catalytic properties of supported subnanometer platinum cluster on carbon nanotube support and focus is put on the inhibition of deep dehydrogenation. The reactivities of metal, interface, and tin promoter are investigated at the same footing. The whole reaction pathway from propane adsorption to propene desorption is revealed for different sites. It turns out that the C-H bond activation in propane is not the catalytic step with the largest barrier. Instead, the desorption of propene is more difficult. The comparison between different sites indicates that the interface between metal and support and Sn promoter is helpful to curb the propene deep dehydrogenation. Moreover, a descriptor is proposed to screen the potential effective propane direct dehydrogenation catalyst. The current work provides important insights on the development of new dehydrogenation catalyst.
引用
收藏
页码:661 / 665
页数:5
相关论文
共 28 条
[1]   Doped graphenes in catalysis [J].
Albero, Josep ;
Garcia, Hermenegildo .
JOURNAL OF MOLECULAR CATALYSIS A-CHEMICAL, 2015, 408 :296-309
[2]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[3]  
Campbell CT, 2012, NAT CHEM, V4, P597, DOI 10.1038/nchem.1412
[4]   Defects in carbon nanotubes [J].
Charlier, JC .
ACCOUNTS OF CHEMICAL RESEARCH, 2002, 35 (12) :1063-1069
[5]   Atomic (single, double, and triple atoms) catalysis: frontiers, opportunities, and challenges [J].
Chen, Z. W. ;
Chen, L. X. ;
Yang, C. C. ;
Jiang, Q. .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (08) :3492-3515
[6]   Effect of the Damping Function in Dispersion Corrected Density Functional Theory [J].
Grimme, Stefan ;
Ehrlich, Stephan ;
Goerigk, Lars .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2011, 32 (07) :1456-1465
[7]   Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals [J].
Hammer, B ;
Hansen, LB ;
Norskov, JK .
PHYSICAL REVIEW B, 1999, 59 (11) :7413-7421
[8]   Gold as a novel catalyst in the 21st century: Preparation, working mechanism and applications [J].
Haruta, M .
GOLD BULLETIN, 2004, 37 (1-2) :27-36
[9]   Subnanometer-sized Pt/Sn alloy cluster catalysts for the dehydrogenation of linear alkanes [J].
Hauser, Andreas W. ;
Gomes, Joseph ;
Bajdich, Michal ;
Head-Gordon, Martin ;
Bell, Alexis T. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2013, 15 (47) :20727-20734
[10]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904