Multipass Greedy Coloring of Simple Uniform Hypergraphs

被引:4
作者
Kozik, Jakub [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Theoret Comp Sci Dept, Krakow, Poland
关键词
hypergraph coloring; greedy algorithm; van der Waerden numbers;
D O I
10.1002/rsa.20613
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let m*(n) be the minimum number of edges in an n-uniform simple hypergraph that is not two colorable. We prove that m*(n) = Omega (4n/ ln2 (n)). Our result generalizes to r-coloring of b-simple uniform hypergraphs. For fixed r and b we prove that a maximum vertex degree in b-simple n-uniform hypergraph that is not r-colorable must be Omega (r(n)/ ln(n)). By trimming arguments it implies that every such graph has Omega ((r(n)/ ln(n)) b+1/b) edges. For any fixed r >= 2 our techniques yield also a lower bound Omega (r(n)/ ln(n)) for van derWaerden numbersW(n, r). (c) 2015 Wiley Periodicals, Inc.
引用
收藏
页码:125 / 146
页数:22
相关论文
共 17 条