A Novel Human TGF-β1 Fusion Protein in Combination with rhBMP-2 Increases Chondro-Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells

被引:13
作者
Claros, Silvia [1 ,2 ]
Rico-Llanos, Gustavo A. [1 ]
Becerra, Jose [1 ,2 ,3 ]
Andrades, Jose A. [1 ,2 ]
机构
[1] Univ Malaga, Fac Sci, Dept Cell Biol Genet & Physiol, Lab Bioengn & Tissue Regenerat LABRET, E-29071 Malaga, Spain
[2] Networking Biomed Res Ctr Bioengn Biomat & Nanome, Madrid 28029, Spain
[3] Univ Malaga, BIONAND, Ctr Andaluz Nanomed & Biotecnol Junta Andalucia, Malaga 29590, Spain
关键词
stem/progenitor cell; three-dimensional (3D) culture; transforming growth factor-beta1 (TGF-beta 1); bone morphogenetic protein-2 (BMP-2); osteogenesis; chondrogenesis; STROMAL CELLS; OSTEOBLAST DIFFERENTIATION; TRANSCRIPTION FACTOR; PROGENITOR CELLS; GENE-EXPRESSION; GROWTH; RAT; COLLAGEN; NANOG; BETA;
D O I
10.3390/ijms150711255
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Transforming growth factor-beta (TGF-beta) is involved in processes related to the differentiation and maturation of osteoprogenitor cells into osteoblasts. Rat bone marrow (BM) cells were cultured in a collagen-gel containing 0.5% fetal bovine serum (FBS) for 10 days in the presence of rhTGF (recombinant human TGF)-beta 1-F2, a fusion protein engineered to include a high-affinity collagen-binding decapeptide derived from von Willebrand factor. Subsequently, cells were moderately expanded in medium with 10% FBS for 4 days and treated with a short pulse of rhBMP (recombinant human bone morphogenetic protein)-2 for 4 h. During the last 2 days, dexamethasone and beta-glycerophosphate were added to potentiate osteoinduction. Concomitant with an up-regulation of cell proliferation, DNA synthesis levels were determined. Polymerase chain reaction was performed to reveal the possible stemness of these cells. Osteogenic differentiation was evaluated in terms of alkaline phosphatase activity and mineralized matrix formation as well as by mRNA expression of osteogenic marker genes. Moreover, cells were placed inside diffusion chambers and implanted subcutaneously into the backs of adult rats for 4 weeks. Histological study provided evidence of cartilage and bone-like tissue formation. This experimental procedure is capable of selecting cell populations from BM that, in the presence of rhTGF-beta 1-F2 and rhBMP-2, achieve skeletogenic potential in vitro and in vivo.
引用
收藏
页码:11255 / 11274
页数:20
相关论文
共 69 条
[11]   TRANSFORMING GROWTH-FACTOR-BETA GENE FAMILY MEMBERS AND BONE [J].
CENTRELLA, M ;
HOROWITZ, MC ;
WOZNEY, JM ;
MCCARTHY, TL .
ENDOCRINE REVIEWS, 1994, 15 (01) :27-39
[12]   The transcriptional foundation of pluripotency [J].
Chambers, Ian ;
Tomlinson, Simon R. .
DEVELOPMENT, 2009, 136 (14) :2311-2322
[13]   TGF-β and BMP Signaling in Osteoblast Differentiation and Bone Formation [J].
Chen, Guiqian ;
Deng, Chuxia ;
Li, Yi-Ping .
INTERNATIONAL JOURNAL OF BIOLOGICAL SCIENCES, 2012, 8 (02) :272-288
[14]   Inhibition of growth and differentiation of osteoprogenitors in mouse bone marrow stromal cell cultures by increased donor age and glucocorticoid treatment [J].
Chen, TL .
BONE, 2004, 35 (01) :83-95
[15]   SELECTION AND INDUCTION OF RAT SKELETAL MUSCLE-DERIVED CELLS TO THE CHONDRO-OSTEOGENIC LINEAGE [J].
Claros, S. ;
Alonso, M. ;
Becerra, J. ;
Andrades, J. A. .
CELLULAR AND MOLECULAR BIOLOGY, 2008, 54 (01) :1-10
[16]   Characterization of Adult Stem/Progenitor Cell Populations From Bone Marrow in a Three-Dimensional Collagen Gel Culture System [J].
Claros, Silvia ;
Rodriguez-Losada, Noela ;
Cruz, Encarnacion ;
Guerado, Enrique ;
Becerra, Jose ;
Andrades, Jose A. .
CELL TRANSPLANTATION, 2012, 21 (09) :2021-2032
[17]  
Das Madhurima, 2013, J Stem Cells, V8, P1
[18]   Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement [J].
Dominici, M. ;
Le Blanc, K. ;
Mueller, I. ;
Slaper-Cortenbach, I. ;
Marini, F. C. ;
Krause, D. S. ;
Deans, R. J. ;
Keating, A. ;
Prockop, D. J. ;
Horwitz, E. M. .
CYTOTHERAPY, 2006, 8 (04) :315-317
[19]  
Gazit D, 1999, J CELL BIOCHEM, V73, P379, DOI 10.1002/(SICI)1097-4644(19990601)73:3<379::AID-JCB9>3.0.CO
[20]  
2-U