Rings with simple Lie rings of Lie and Jordan derivations

被引:4
作者
Al Khalaf, Ahmad [1 ]
Artemovych, Orest D. [2 ]
Taha, Iman [3 ]
机构
[1] Al Imam Mohammad Ibn Saud Islamic Univ, Coll Sci, Dept Math, POB 90950, Riyadh, Saudi Arabia
[2] Cracow Univ Technol, Inst Math, Ul Warszawska 24, PL-31155 Krakow, Poland
[3] Saudi Elect Univ, Riyadh, Saudi Arabia
关键词
Derivation; Lie derivation; Jordan derivation; Lie ring; PRIME-RINGS; ALGEBRAS;
D O I
10.1142/S0219498818500780
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be an associative ring. We characterize rings R with simple Lie ring LDerR of all Lie derivations, reduced noncommutative Noetherian ring R with the simple Lie ring DerR of all derivations and obtain some properties of 2-torsion-free rings R with the simple Lie ring JDerR of all Jordan derivations.
引用
收藏
页数:11
相关论文
共 24 条
[1]  
Artemovych O. D., 1999, ANN U SCI BUDAP, V42, P35
[2]   RADICALS OF CROSSED-PRODUCTS OF ENVELOPING-ALGEBRAS [J].
BERGEN, J ;
MONTGOMERY, S ;
PASSMAN, DS .
ISRAEL JOURNAL OF MATHEMATICS, 1987, 59 (02) :167-184
[3]   DETERMINATION OF DIFFERENTIABLY SIMPLE RINGS WITH A MINIMAL IDEAL [J].
BLOCK, RE .
ANNALS OF MATHEMATICS, 1969, 90 (03) :433-&
[4]  
Bourbaki N., 1961, Algebre Commutative
[6]   JORDAN DERIVATIONS ON PRIME-RINGS [J].
BRESAR, M ;
VUKMAN, J .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1988, 37 (03) :321-322
[7]  
Bresar M., 2000, FUNCTIONAL IDENTITIE
[8]   JORDAN DERIVATIONS ON RINGS [J].
CUSACK, JM .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1975, 53 (02) :321-324
[9]  
Fuchs L., 1973, PURE APPL MATH, V36
[10]  
Herstein I. N., 1957, Proc. Am. Math. Soc., V8, P1104, DOI [10.2307/2032688, 10.1090/S0002-9939-1957-0095864-2, DOI 10.1090/S0002-9939-1957-0095864-2]