Robustness of error estimators for finite element solutions of problems with high orthotropy

被引:2
|
作者
Strouboulis, T. [1 ]
Wang, D. L. [1 ]
Babuska, I. [2 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
A-posteriori error estimation; High orthotropy; Thermal battery; Implicit error estimator; Explicit error estimator; VISCOELASTICITY PROBLEMS; CALCULATED OUTPUTS; BOUNDS; ELASTICITY; STRICT;
D O I
10.1016/j.cma.2008.12.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we address the accuracy of a posteriori error estimators for finite element solutions of problems with high orthotropy especially for cases where rather coarse meshes are used, which are often encountered in engineering computations. We present sample computations which indicate lack of robustness of all standard residual estimators with respect to high orthotropy. The main culprit is the coarseness of the finite element meshes relative to the thickness of the boundary and interface layers in the solution. This is often imposed by the size of the problem domain, the capabilities for mesh generation, and the employed finite element software and cannot be changed. Hence, there is need for a posteriori error estimation approaches which are robust for coarse meshes and which are constructed using non-intrusive approaches with respect to the employed software. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1946 / 1966
页数:21
相关论文
共 50 条
  • [31] ANALYTICAL SOLUTIONS OF MASS-TRANSPORT PROBLEMS FOR ERROR ESTIMATION OF FINITE INFINITE ELEMENT METHODS
    ZHAO, CB
    STEVEN, GP
    COMMUNICATIONS IN NUMERICAL METHODS IN ENGINEERING, 1995, 11 (01): : 13 - 23
  • [32] Improved error estimates for semidiscrete finite element solutions of parabolic Dirichlet boundary control problems
    Gong, Wei
    Li, Buyang
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2020, 40 (04) : 2898 - 2939
  • [33] A posteriori error estimates of mixed finite element solutions for fourth order parabolic control problems
    Hou, Chunjuan
    Chen, Yanping
    Lu, Zuliang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2015,
  • [34] A posteriori error estimates of mixed finite element solutions for fourth order parabolic control problems
    Chunjuan Hou
    Yanping Chen
    Zuliang Lu
    Journal of Inequalities and Applications, 2015
  • [35] A priori error estimates of finite element solutions of parametrized strongly nonlinear boundary value problems
    Tsuchiya, T
    Babuska, I
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1997, 79 (01) : 41 - 66
  • [36] ERROR-ESTIMATES FOR FINITE-ELEMENT SOLUTIONS OF ELLIPTIC BOUNDARY-VALUE-PROBLEMS
    MASHAIE, A
    HUGHES, E
    GOLDAK, J
    COMPUTERS & STRUCTURES, 1993, 49 (01) : 187 - 198
  • [37] Adaptive finite element discretization in elasticity and elastoplasticity by global and local error estimators using local Neumann-problems
    Stein, E
    Ohnimus, S
    Walhorn, E
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1999, 79 : S147 - S150
  • [38] Posteriori finite element error estimation for diffusion problems
    Adjerid, Slimane
    Belguendouz, Belkacem
    Flaherty, Joseph E.
    SIAM Journal on Scientific Computing, 21 (02): : 728 - 746
  • [39] Finite element error estimates for nonlinear convective problems
    Kucera, Vaclav
    JOURNAL OF NUMERICAL MATHEMATICS, 2016, 24 (03) : 143 - 165
  • [40] A posteriori finite element error estimation for diffusion problems
    Adjerid, S
    Belguendouz, B
    Flaherty, JE
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (02): : 728 - 746