Robustness of error estimators for finite element solutions of problems with high orthotropy

被引:2
|
作者
Strouboulis, T. [1 ]
Wang, D. L. [1 ]
Babuska, I. [2 ]
机构
[1] Texas A&M Univ, Dept Aerosp Engn, College Stn, TX 77843 USA
[2] Univ Texas Austin, Inst Computat Engn & Sci, Austin, TX 78712 USA
关键词
A-posteriori error estimation; High orthotropy; Thermal battery; Implicit error estimator; Explicit error estimator; VISCOELASTICITY PROBLEMS; CALCULATED OUTPUTS; BOUNDS; ELASTICITY; STRICT;
D O I
10.1016/j.cma.2008.12.040
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, we address the accuracy of a posteriori error estimators for finite element solutions of problems with high orthotropy especially for cases where rather coarse meshes are used, which are often encountered in engineering computations. We present sample computations which indicate lack of robustness of all standard residual estimators with respect to high orthotropy. The main culprit is the coarseness of the finite element meshes relative to the thickness of the boundary and interface layers in the solution. This is often imposed by the size of the problem domain, the capabilities for mesh generation, and the employed finite element software and cannot be changed. Hence, there is need for a posteriori error estimation approaches which are robust for coarse meshes and which are constructed using non-intrusive approaches with respect to the employed software. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:1946 / 1966
页数:21
相关论文
共 50 条
  • [1] η%-superconvergence of finite element solutions and error estimators
    Zhang, L
    Strouboulis, T
    Babuska, I
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 2001, 15 (1-4) : 393 - 404
  • [2] η%-Superconvergence of Finite Element Solutions and Error Estimators
    L. Zhang
    T. Strouboulis
    I. Babuška
    Advances in Computational Mathematics, 2001, 15 : 393 - 404
  • [3] A posteriori error estimators related to equilibrium defaults of finite element solutions for elastostatic problems
    Maunder, EAW
    Zhong, HG
    Beckers, P
    FINITE ELEMENTS IN ANALYSIS AND DESIGN, 1997, 26 (03) : 171 - 192
  • [4] Symmetry reductions and a posteriori finite element error estimators for bifurcation problems
    Chien, CS
    Jeng, BW
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2005, 15 (07): : 2091 - 2107
  • [5] Posteriori finite element error estimators for indefinite elliptic boundary value problems
    Liu, J.-L.
    Rheinboldt, W.C.
    Numerical Functional Analysis and Optimization, 1994, 15 (3-4)
  • [6] Residual and Equilibrated Error Estimators for Magnetostatic Problems Solved by Finite Element Method
    Tang, Zuqi
    Le Menach, Yvonnick
    Creuse, Emmanuel
    Nicaise, Serge
    Piriou, Francis
    Nemitz, Nicolas
    IEEE TRANSACTIONS ON MAGNETICS, 2013, 49 (12) : 5715 - 5723
  • [7] Comparison of Residual and Hierarchical Finite Element Error Estimators in Eddy Current Problems
    Dular, Patrick
    Tang, Zuqi
    Le Menach, Yvonnick
    Creuse, Emmanuel
    Piriou, Francis
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 501 - 504
  • [8] Error estimators and the adaptive finite element method on large strain deformation problems
    Meyer, Arnd
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (16) : 2148 - 2159
  • [9] A posteriori finite element error estimators for parametrized nonlinear boundary value problems
    Liu, JL
    Rheinboldt, WC
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 1996, 17 (5-6) : 605 - 637
  • [10] A posteriori error estimators for nonconforming finite element methods
    Dari, E
    Duran, R
    Padra, C
    Vampa, V
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1996, 30 (04): : 385 - 400