Equilibrium Point Bifurcation and Singularity Analysis of HH Model with Constraint

被引:1
作者
Zhu, Xinhe [1 ,2 ]
Wu, Zhiqiang [1 ]
机构
[1] Tianjin Univ, Sch Mech Engn, Dept Mech, Tianjin 300072, Peoples R China
[2] Tianjin Polytech Univ, Sch Sci, Dept Math, Tianjin 300387, Peoples R China
基金
美国国家科学基金会;
关键词
MULTIPLE-PARAMETER SPACE; HUXLEY EQUATIONS; HOPF BIFURCATIONS; HODGKIN; OSCILLATIONS;
D O I
10.1155/2014/545236
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the equilibrium point bifurcation and singularity analysis of HH model with constraints. We investigate the effect of constraints and parameters on the type of equilibrium point bifurcation. HH model with constraints has more transition sets. The Matcont toolbox software environment was used for analysis of the bifurcation points in conjunction with Matlab. We also illustrate the stability of the equilibrium points.
引用
收藏
页数:8
相关论文
共 13 条
  • [1] [Anonymous], 1985, APPL MATH SCI
  • [2] [Anonymous], 1987, MATH ASPECTS HODGKIN, DOI DOI 10.1017/CBO9780511983955
  • [3] [Anonymous], 1969, BIOL ENG
  • [4] Method for constructing the boundary of the bursting oscillations region in the neuron model
    Bedrov Y.A.
    Dick O.E.
    Nozdrachev A.D.
    Akoev G.N.
    [J]. Biological Cybernetics, 2000, 82 (6) : 493 - 497
  • [5] PARTITION OF THE HODGKIN-HUXLEY TYPE MODEL PARAMETER SPACE INTO THE REGIONS OF QUALITATIVELY DIFFERENT SOLUTIONS
    BEDROV, YA
    AKOEV, GN
    DICK, OE
    [J]. BIOLOGICAL CYBERNETICS, 1992, 66 (05) : 413 - 418
  • [6] MINIMAL MODEL FOR MEMBRANE OSCILLATIONS IN THE PANCREATIC BETA-CELL
    CHAY, TR
    KEIZER, J
    [J]. BIOPHYSICAL JOURNAL, 1983, 42 (02) : 181 - 189
  • [7] Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations I. Global organization of bistable periodic solutions
    Fukai, H
    Doi, S
    Nomura, T
    Sato, S
    [J]. BIOLOGICAL CYBERNETICS, 2000, 82 (03) : 215 - 222
  • [8] Hopf bifurcations in multiple-parameter space of the Hodgkin-Huxley equations II. Singularity theoretic approach and highly degenerate bifurcations
    Fukai, H
    Nomura, T
    Doi, S
    Sato, S
    [J]. BIOLOGICAL CYBERNETICS, 2000, 82 (03) : 223 - 229
  • [9] BIFURCATION OF THE HODGKIN AND HUXLEY EQUATIONS - A NEW TWIST
    GUCKENHEIMER, J
    LABOURIAU, IS
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 1993, 55 (05) : 937 - 952
  • [10] Guckenheimer J., 2013, NONLINEAR OSCILLATIO, V42