Tensor Network Renormalization Yields the Multiscale Entanglement Renormalization Ansatz

被引:97
作者
Evenbly, G. [1 ]
Vidal, G. [2 ]
机构
[1] Univ Calif Irvine, Dept Phys & Astron, Irvine, CA 92697 USA
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
基金
澳大利亚研究理事会;
关键词
ALGORITHMS;
D O I
10.1103/PhysRevLett.115.200401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show how to build a multiscale entanglement renormalization ansatz (MERA) representation of the ground state of a many-body Hamiltonian H by applying the recently proposed tensor network renormalization [G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 180405 (2015)] to the Euclidean time evolution operator e(-beta H) for infinite beta. This approach bypasses the costly energy minimization of previous MERA algorithms and, when applied to finite inverse temperature beta, produces a MERA representation of a thermal Gibbs state. Our construction endows tensor network renormalization with a renormalization group flow in the space of wave functions and Hamiltonians (and not merely in the more abstract space of tensors) and extends the MERA formalism to classical statistical systems.
引用
收藏
页数:5
相关论文
共 40 条
[1]  
[Anonymous], ARXIV13096282
[2]  
[Anonymous], ARXIV151000689
[3]  
[Anonymous], ARXIV12093304
[4]   Consistency conditions for an AdS multiscale entanglement renormalization ansatz correspondence [J].
Bao, Ning ;
Cao, ChunJun ;
Carroll, Sean M. ;
Chatwin-Davies, Aidan ;
Hunter-Jones, Nicholas ;
Pollack, Jason ;
Remmen, Grant N. .
PHYSICAL REVIEW D, 2015, 91 (12)
[5]   Multiscale entanglement renormalization ansatz for spin chains with continuously varying criticality [J].
Bridgeman, Jacob C. ;
O'Brien, Aroon ;
Bartlett, Stephen D. ;
Doherty, Andrew C. .
PHYSICAL REVIEW B, 2015, 91 (16)
[6]   Tensor Network Renormalization [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW LETTERS, 2015, 115 (18)
[7]   Theory of minimal updates in holography [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW B, 2015, 91 (20)
[8]   Algorithms for Entanglement Renormalization: Boundaries, Impurities and Interfaces [J].
Evenbly, G. ;
Vidal, G. .
JOURNAL OF STATISTICAL PHYSICS, 2014, 157 (4-5) :931-978
[9]   Real-Space Decoupling Transformation for Quantum Many-Body Systems [J].
Evenbly, G. ;
Vidal, G. .
PHYSICAL REVIEW LETTERS, 2014, 112 (22)
[10]   Tensor Network States and Geometry [J].
Evenbly, G. ;
Vidal, G. .
JOURNAL OF STATISTICAL PHYSICS, 2011, 145 (04) :891-918