Stability of discrete Volterra equations of Hammerstein type

被引:16
|
作者
Crisci, MR
Kolmanovskii, VB
Russo, E
Vecchio, A
机构
[1] CNR, Ist Applicazioni Matemat, I-80131 Naples, Italy
[2] Univ Salerno, Dipartimento Ingn Inf & Matemat Applicata, I-84084 Salerno, Italy
[3] Russian Acad Sci, IKI, Moscow Inst Elect & Math, Moscow 109172, Russia
[4] Russian Acad Sci, IKI, Inst Space Res, Moscow 109172, Russia
[5] Univ Naples Federico II, Compl Univ Monte S Angelo, Dipartimento Matemat & Applicazioni R Caccioppoli, I-80126 Naples, Italy
关键词
discrete Volterra equations; Hammerstein; stability; direct quadrature methods;
D O I
10.1080/10236190008808218
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Stability conditions for Volterra equations with discrete time are obtained using direct Liapunov method, without usual assumption of the summability of the series of the coefficients. Using such conditions, the stability of some numerical methods for second kind Volterra integral equation is analyzed.
引用
收藏
页码:127 / 145
页数:19
相关论文
共 50 条
  • [31] Asymptotic Properties of Solutions to Discrete Volterra Monotone Type Equations
    Migda, Janusz
    Migda, Malgorzata
    Schmeidel, Ewa
    SYMMETRY-BASEL, 2021, 13 (06):
  • [32] Approximated superconvergent methods for Volterra Hammerstein integral equations
    Chakraborty, Samiran
    Nelakanti, Gnaneshwar
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2024, 130
  • [33] STABILITY RESULTS FOR DIFFERENCE-EQUATIONS OF VOLTERRA TYPE
    ZOUYOUSEFAIN, M
    LEELA, S
    APPLIED MATHEMATICS AND COMPUTATION, 1990, 36 (01) : 51 - 61
  • [34] STABILITY OF FUNCTIONAL-DIFFERENTIAL EQUATIONS OF VOLTERRA TYPE
    RAO, MRM
    SRINIVAS, P
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1984, 29 (01) : 93 - 100
  • [35] ONE-PARAMETRIC FAMILY OF POSITIVE SOLUTIONS FOR A CLASS OF NONLINEAR DISCRETE HAMMERSTEIN-VOLTERRA EQUATIONS
    Azizyan, H. H.
    Khachatryan, Kh. A.
    UFA MATHEMATICAL JOURNAL, 2016, 8 (01): : 13 - 19
  • [36] Numerical Solution of Volterra–Hammerstein Delay Integral Equations
    Parisa Rahimkhani
    Yadollah Ordokhani
    Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 445 - 457
  • [37] Admissibility for discrete Volterra equations
    Song, Yihong
    Baker, Christopher T. H.
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2006, 12 (05) : 433 - 457
  • [38] Boundedness of discrete Volterra equations
    Crisci, MR
    Kolmanovskii, VB
    Russo, E
    Vecchio, A
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1997, 211 (01) : 106 - 130
  • [39] Stabilization of Volterra discrete equations
    Gaishun, IV
    DIFFERENTIAL EQUATIONS, 1998, 34 (02) : 277 - 282
  • [40] Global stability of discrete models of Lotka-Volterra type
    Wang, WD
    Lu, ZY
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1999, 35 (08) : 1019 - 1030