Generative models improve radiomics performance in different tasks and different datasets: An experimental study

被引:8
作者
Chen, Junhua [1 ]
Bermejo, Inigo [1 ]
Dekker, Andre [1 ]
Wee, Leonard [1 ]
机构
[1] Maastricht Univ, GROW Sch Oncol & Dev Biol, Dept Radiat Oncol MAASTRO, Med Ctr, NL-6229 ET Maastricht, Netherlands
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2022年 / 98卷
关键词
Radiomics; Generative models; Image denoising; Comparative study; LOW-DOSE CT; FEATURES; MRI; ROBUSTNESS; PREDICTION; PROGNOSIS; NETWORK; CURVE;
D O I
10.1016/j.ejmp.2022.04.008
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: Radiomics is an active area of research focusing on high throughput feature extraction from medical images with a wide array of applications in clinical practice, such as clinical decision support in oncology. However, noise in low dose computed tomography (CT) scans can impair the accurate extraction of radiomic features. In this article, we investigate the possibility of using deep learning generative models to improve the performance of radiomics from low dose CTs.Methods: We used two datasets of low dose CT scans - NSCLC Radiogenomics and LIDC-IDRI - as test datasets for two tasks - pre-treatment survival prediction and lung cancer diagnosis. We used encoder-decoder networks and conditional generative adversarial networks (CGANs) trained in a previous study as generative models to transform low dose CT images into full dose CT images. Radiomic features extracted from the original and improved CT scans were used to build two classifiers - a support vector machine (SVM) and a deep attention based multiple instance learning model - for survival prediction and lung cancer diagnosis respectively. Finally, we compared the performance of the models derived from the original and improved CT scans.Results: Denoising with the encoder-decoder network and the CGAN improved the area under the curve (AUC) of survival prediction from 0.52 to 0.57 (p-value < 0.01). On the other hand, the encoder-decoder network and the CGAN improved the AUC of lung cancer diagnosis from 0.84 to 0.88 and 0.89 respectively (p-value < 0.01). Finally, there are no statistically significant improvements in AUC using encoder-decoder networks and CGAN (pvalue = 0.34) when networks trained at 75 and 100 epochs.Conclusion: Generative models can improve the performance of low dose CT-based radiomics in different tasks. Hence, denoising using generative models seems to be a necessary pre-processing step for calculating radiomic features from low dose CTs.
引用
收藏
页码:11 / 17
页数:7
相关论文
共 60 条
[1]   Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach [J].
Aerts, Hugo J. W. L. ;
Velazquez, Emmanuel Rios ;
Leijenaar, Ralph T. H. ;
Parmar, Chintan ;
Grossmann, Patrick ;
Cavalho, Sara ;
Bussink, Johan ;
Monshouwer, Rene ;
Haibe-Kains, Benjamin ;
Rietveld, Derek ;
Hoebers, Frank ;
Rietbergen, Michelle M. ;
Leemans, C. Rene ;
Dekker, Andre ;
Quackenbush, John ;
Gillies, Robert J. ;
Lambin, Philippe .
NATURE COMMUNICATIONS, 2014, 5
[2]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[3]   Artificial intelligence applications in medical imaging: A review of the medical physics research in Italy [J].
Avanzo, Michele ;
Porzio, Massimiliano ;
Lorenzon, Leda ;
Milan, Lisa ;
Sghedoni, Roberto ;
Russo, Giorgio ;
Massafra, Raffaella ;
Fanizzi, Annarita ;
Barucci, Andrea ;
Ardu, Veronica ;
Branchini, Marco ;
Giannelli, Marco ;
Gallio, Elena ;
Cilla, Savino ;
Tangaro, Sabina ;
Lombardi, Angela ;
Pirrone, Giovanni ;
De Martin, Elena ;
Giuliano, Alessia ;
Belmonte, Gina ;
Russo, Serenella ;
Rampado, Osvaldo ;
Mettivier, Giovanni .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 :221-241
[4]   Radiomic MRI Phenotyping of Glioblastoma: Improving Survival Preciction [J].
Bae, Sohi ;
Choi, Yoon Seong ;
Ahn, Sung Soo ;
Chang, Jong Hee ;
Kang, Seok-Gu ;
Kim, Eui Hyun ;
Kim, Se Hoon ;
Lee, Seung-Koo .
RADIOLOGY, 2018, 289 (03) :797-806
[5]   On the impact of smoothing and noise on robustness of CT and CBCT radiomics features for patients with head and neck cancers [J].
Bagher-Ebadian, Hassan ;
Siddiqui, Farzan ;
Liu, Chang ;
Movsas, Benjamin ;
Chetty, Indrin J. .
MEDICAL PHYSICS, 2017, 44 (05) :1755-1770
[6]   On the limitations of the area under the ROC curve for NTCP modelling [J].
Bahn, Emanuel ;
Alber, Markus .
RADIOTHERAPY AND ONCOLOGY, 2020, 144 :148-151
[7]   A radiogenomic dataset of non-small cell lung cancer [J].
Bakr, Shaimaa ;
Gevaert, Olivier ;
Echegaray, Sebastian ;
Ayers, Kelsey ;
Zhou, Mu ;
Shafiq, Majid ;
Zheng, Hong ;
Benson, Jalen Anthony ;
Zhang, Weiruo ;
Leung, Ann N. C. ;
Kadoch, Michael ;
Hoang, Chuong D. ;
Shrager, Joseph ;
Quon, Andrew ;
Rubin, Daniel L. ;
Plevritis, Sylvia K. ;
Napel, Sandy .
SCIENTIFIC DATA, 2018, 5
[8]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[9]   Stability of radiomic features in CT perfusion maps [J].
Bogowicz, M. ;
Riesterer, O. ;
Bundschuh, R. A. ;
Veit-Haibach, P. ;
Huellner, M. ;
Studer, G. ;
Stieb, S. ;
Glatz, S. ;
Pruschy, M. ;
Guckenberger, M. ;
Tanadini-Lang, S. .
PHYSICS IN MEDICINE AND BIOLOGY, 2016, 61 (24) :8736-8749
[10]  
Cawley GC, 2010, J MACH LEARN RES, V11, P2079