Redox-Active Molecular Nanowire Flash Memory for High-Endurance and High-Density Nonvolatile Memory Applications

被引:60
作者
Zhu, Hao [1 ,2 ]
Pookpanratana, Sujitra J. [2 ]
Bonevich, John Y. [3 ]
Natoli, Sean N. [4 ]
Hacker, Christina A. [2 ]
Ren, Tong [4 ]
Suehle, John S. [2 ]
Richter, Curt A. [2 ]
Li, Qiliang [1 ]
机构
[1] George Mason Univ, Dept Elect & Comp Engn, Fairfax, VA 22030 USA
[2] NIST, Semicond & Dimens Metrol Div, Gaithersburg, MD 20899 USA
[3] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
[4] Purdue Univ, Dept Chem, W Lafayette, IN 47907 USA
基金
美国国家科学基金会;
关键词
redox-active molecules; Si nanowire FETs; flash memory; endurance; multi-bit memory; MONOLAYERS; CHALLENGES; DESIGN;
D O I
10.1021/acsami.5b08517
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
In this work, high-performance top-gated nanowire molecular flash memory has been fabricated with redox-active molecules. Different molecules with one and two redox centers have been tested. The flash memory has clean solid/molecule and dielectric interfaces, due to the pristine molecular self-assembly and the nanowire device self-alignment fabrication process. The memory cells exhibit discrete charged states at small gate voltages. Such multi-bit memory in one cell is favorable for high-density storage. These memory devices exhibit fast speed, low power, long memory retention, and exceptionally good endurance (>10(9) cycles). The excellent characteristics are derived from the intrinsic charge-storage properties of the protected redox-active molecules. Such multi-bit molecular flash memory is very attractive for high-endurance and high-density on-chip memory applications in future portable electronics.
引用
收藏
页码:27306 / 27313
页数:8
相关论文
共 33 条
[1]  
[Anonymous], INT TECHN ROADM SEM
[2]   Future directions and challenges for ETox flash memory scaling [J].
Atwood, G .
IEEE TRANSACTIONS ON DEVICE AND MATERIALS RELIABILITY, 2004, 4 (03) :301-305
[3]   Design and fabrication of memory devices based on nanoscale polyoxometalate clusters [J].
Busche, Christoph ;
Vila-Nadal, Laia ;
Yan, Jun ;
Miras, Haralampos N. ;
Long, De-Liang ;
Georgiev, Vihar P. ;
Asenov, Asen ;
Pedersen, Rasmus H. ;
Gadegaard, Nikolaj ;
Mirza, Muhammad M. ;
Paul, Douglas J. ;
Poblet, Josep M. ;
Cronin, Leroy .
NATURE, 2014, 515 (7528) :545-549
[4]   High performance silicon nanowire field effect transistors [J].
Cui, Y ;
Zhong, ZH ;
Wang, DL ;
Wang, WU ;
Lieber, CM .
NANO LETTERS, 2003, 3 (02) :149-152
[5]   Diruthenium Alkynyl Compounds with Phosphonate Capping Groups [J].
Cummings, Steven P. ;
Savchenko, Julia ;
Fanwick, Philip E. ;
Kharlamova, Anastasia ;
Ren, Tong .
ORGANOMETALLICS, 2013, 32 (04) :1129-1132
[6]   Recent results on organic-based molecular memories [J].
De Salvo, Barbara ;
Buckley, Julien ;
Vuillaume, Dominique .
CURRENT APPLIED PHYSICS, 2011, 11 (02) :E49-E57
[7]   The occupied and unoccupied electronic structure of adsorbed ferrocene [J].
Dowben, PA ;
Waldfried, C ;
Komesu, T ;
Welipitiya, D ;
McAvoy, T ;
Vescovo, E .
CHEMICAL PHYSICS LETTERS, 1998, 283 (1-2) :44-50
[8]   Nonvolatile memory and programmable logic from molecule-gated nanowires [J].
Duan, XF ;
Huang, Y ;
Lieber, CM .
NANO LETTERS, 2002, 2 (05) :487-490
[9]   Body effect in tri- and pi-gate SOI MOSFETs [J].
Frei, J ;
Johns, C ;
Vazquez, A ;
Xiong, WZ ;
Cleavelin, CR ;
Schulz, T ;
Chaudhary, N ;
Gebara, G ;
Zaman, JR ;
Gostkowski, M ;
Matthews, K ;
Colinge, JP .
IEEE ELECTRON DEVICE LETTERS, 2004, 25 (12) :813-815
[10]   A defect-tolerant computer architecture: Opportunities for nanotechnology [J].
Heath, JR ;
Kuekes, PJ ;
Snider, GS ;
Williams, RS .
SCIENCE, 1998, 280 (5370) :1716-1721