Ultrafast chemical imaging by widefield photothermal sensing of infrared absorption

被引:94
作者
Bai, Yeran [1 ,2 ,3 ,4 ]
Zhang, Delong [3 ,4 ]
Lan, Lu [4 ,5 ]
Huang, Yimin [4 ,6 ]
Maize, Kerry [7 ]
Shakouri, Ali [7 ]
Cheng, Ji-Xin [3 ,4 ,5 ,6 ]
机构
[1] Chinese Acad Sci, Shanghai Inst Opt & Fine Mech, Key Lab High Power Laser & Phys, Shanghai 201800, Peoples R China
[2] Univ Chinese Acad Sci, Ctt Mat Sci & Optoelect Engn, Beijing 100049, Peoples R China
[3] Boston Univ, Dept Elect & Comp Engn, Boston, MA 02215 USA
[4] Boston Univ, Photon Ctr, Boston, MA 02215 USA
[5] Boston Univ, Dept Biomed Engn, Boston, MA 02215 USA
[6] Boston Univ, Dept Chem, Boston, MA 02215 USA
[7] Purdue Univ, Birck Nanotechnol Ctr, W Lafayette, IN 47906 USA
关键词
IN-VIVO; SPECTROSCOPY; MODULATION; MICROSCOPY; CELLS;
D O I
10.1126/sciadv.aav7127
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Infrared (IR) imaging has become a viable tool for visualizing various chemical bonds in a specimen. The performance, however, is limited in terms of spatial resolution and imaging speed. Here, instead of measuring the loss of the IR beam, we use a pulsed visible light for high-throughput, widefield sensing of the transient photothermal effect induced by absorption of single mid-IR pulses. To extract these transient signals, we built a virtual lock-in camera synchronized to the visible probe and IR light pulses with precisely controlled delays, allowing submicrosecond temporal resolution determined by the probe pulse width. Our widefield photothermal sensing microscope enabled chemical imaging at a speed up to 1250 frames/s, with high spectral fidelity, while offering submicrometer spatial resolution. With the capability of imaging living cells and nanometer-scale polymer films, widefield photothermal microscopy opens a new way for high-throughput characterization of biological and material specimens.
引用
收藏
页数:8
相关论文
共 41 条
  • [1] Comparative adsorption performance of ibuprofen and tetracycline from aqueous solution by carbonaceous materials
    Alvarez-Torrellas, S.
    Rodriguez, A.
    Ovejero, G.
    Garcia, J.
    [J]. CHEMICAL ENGINEERING JOURNAL, 2016, 283 : 936 - 947
  • [2] SUPER-RESOLUTION APERTURE SCANNING MICROSCOPE
    ASH, EA
    NICHOLLS, G
    [J]. NATURE, 1972, 237 (5357) : 510 - &
  • [3] Interferometric Reflectance Imaging Sensor (IRIS)-A Platform Technology for Multiplexed Diagnostics and Digital Detection
    Avci, Oguzhan
    Unlu, Nese Lortlar
    Ozkumur, Ayca Yalcin
    Unlu, M. Selim
    [J]. SENSORS, 2015, 15 (07): : 17649 - 17665
  • [4] Bond-Selective Imaging of Cells by Mid-Infrared Photothermal Microscopy in High Wavenumber Region
    Bai, Yeran
    Zhang, Delong
    Li, Chen
    Liu, Cheng
    Cheng, Ji-Xin
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2017, 121 (44) : 10249 - 10255
  • [5] Using Fourier transform IR spectroscopy to analyze biological materials
    Baker, Matthew J.
    Trevisan, Julio
    Bassan, Paul
    Bhargava, Rohit
    Butler, Holly J.
    Dorling, Konrad M.
    Fielden, Peter R.
    Fogarty, Simon W.
    Fullwood, Nigel J.
    Heys, Kelly A.
    Hughes, Caryn
    Lasch, Peter
    Martin-Hirsch, Pierre L.
    Obinaju, Blessing
    Sockalingum, Ganesh D.
    Sule-Suso, Josep
    Strong, Rebecca J.
    Walsh, Michael J.
    Wood, Bayden R.
    Gardner, Peter
    Martin, Francis L.
    [J]. NATURE PROTOCOLS, 2014, 9 (08) : 1771 - 1791
  • [6] Subdiffraction Infrared Imaging of Mixed Cation Perovskites: Probing Local Cation Heterogeneities
    Chatterjee, Rusha
    Pavlovetc, Ilia M.
    Aleshire, Kyle
    Hartland, Gregory V.
    Kuno, Masaru
    [J]. ACS ENERGY LETTERS, 2018, 3 (02): : 469 - 475
  • [7] Vibrational spectroscopic imaging of living systems: An emerging platform for biology and medicine
    Cheng, Ji-Xin
    Xie, X. Sunney
    [J]. SCIENCE, 2015, 350 (6264)
  • [8] Improved atomic force microscope infrared spectroscopy for rapid nanometer-scale chemical identification
    Cho, Hanna
    Felts, Jonathan R.
    Yu, Min-Feng
    Bergman, Lawrence A.
    Vakakis, Alexander F.
    King, William P.
    [J]. NANOTECHNOLOGY, 2013, 24 (44)
  • [9] CHRISTOFFERSON J, 2010, 14 INT HEAT TRANSF C
  • [10] Dam JS, 2012, NAT PHOTONICS, V6, P788, DOI [10.1038/NPHOTON.2012.231, 10.1038/nphoton.2012.231]