Optimal Explicit Stabilized Integrator of Weak Order 1 for Stiff and Ergodic Stochastic Differential Equations

被引:23
作者
Abdulle, Assyr [1 ]
Almuslimani, Ibrahim [2 ]
Vilmart, Gilles [2 ]
机构
[1] Ecole Polytech Fed Lausanne, Math Sect, Stn 8, CH-1015 Lausanne, Switzerland
[2] Univ Geneva, Sect Math, CP 64, CH-1211 Geneva 4, Switzerland
来源
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION | 2018年 / 6卷 / 02期
基金
瑞士国家科学基金会;
关键词
explicit stochastic methods; stabilized methods; postprocessor; invariant measure; ergodicity; orthogonal Runge-Kutta Chebyshev; SK-ROCK; PSK-ROCK; RUNGE-KUTTA METHODS; CHEBYSHEV METHODS; MEAN-SQUARE; NUMERICAL SCHEMES; S-ROCK; 2ND-ORDER; SYSTEMS; SDES;
D O I
10.1137/17M1145859
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A new explicit stabilized scheme of weak order 1 for stiff and ergodic stochastic differential equations (SDEs) is introduced. In the absence of noise, the new method coincides with the classical deterministic stabilized scheme (or Chebyshev method) for diffusion dominated advection-diffusion problems, and it inherits its optimal stability domain size that grows quadratically with the number of internal stages of the method. For mean-square stable stiff stochastic problems, the scheme has an optimal extended mean-square stability domain that grows at the same quadratic rate as the deterministic stability domain size in contrast to known existing methods for stiff SDEs [A. Abdulle and T. Li, Commun. Math. Sci., 6 (2008), pp. 845-868; A. Abdulle, G. Vilmart, and K. C. Zygalakis, SIAM J. Sci. Comput., 35 (2013), pp. A1792-A1814]. Combined with postprocessing techniques, the new methods achieve a convergence rate of order 2 for sampling the invariant measure of a class of ergodic SDEs, achieving a stabilized version of the non-Markovian scheme introduced in [B. Leimkuhler, C. Matthews, and M. V. Tretyakov, Proc. A, 470 (2014), 20140120].
引用
收藏
页码:937 / 964
页数:28
相关论文
共 29 条