On the Hormander Classes of Bilinear Pseudodifferential Operators II

被引:47
作者
Benyi, Arpad [1 ]
Bernicot, Frederic [2 ]
Maldonado, Diego [3 ]
Naibo, Virginia [3 ]
Torres, Rodolfo H. [4 ]
机构
[1] Western Washington Univ, Dept Math, Bellingham, WA 98225 USA
[2] Univ Nantes, CNRS, Lab Jean Leray, F-44322 Nantes 3, France
[3] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
[4] Univ Kansas, Dept Math, Lawrence, KS 66045 USA
基金
美国国家科学基金会;
关键词
Bilinear pseudodifferential operators; bilinear Hormander classes; symbolic calculus; Calderon-Zygmund theory; INEQUALITIES; BOUNDEDNESS; LP;
D O I
10.1512/iumj.2013.62.5168
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Boundedness properties for pseudodifferential operators with symbols in the bilinear Hormander classes of sufficiently negative order are proved. The results are obtained in the scale of Lebesgue spaces, and in some cases, end-point estimates involving weak-type spaces and BMO are provided as well. From the Lebesgue space estimates, Sobolev ones are then easily obtained using functional calculus and interpolation. In addition, it is shown that, in contrast with the linear case, operators associated with symbols of order zero may fail to be bounded on products of Lebesgue spaces.
引用
收藏
页码:1733 / 1764
页数:32
相关论文
共 28 条
[1]   ESTIMATES FOR THE KERNEL AND CONTINUITY PROPERTIES OF PSEUDO-DIFFERENTIAL OPERATORS [J].
ALVAREZ, J ;
HOUNIE, J .
ARKIV FOR MATEMATIK, 1990, 28 (01) :1-22
[2]  
Bényi A, 2004, MATH RES LETT, V11, P1
[3]   Symbolic calculus and the transposes of bilinear pseudodifferential operators [J].
Bényi, A ;
Torres, RH .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2003, 28 (5-6) :1161-1181
[4]   On the Hormander Classes of Bilinear Pseudodifferential Operators [J].
Benyi, Arpad ;
Maldonado, Diego ;
Naibo, Virginia ;
Torres, Rodolfo H. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 67 (03) :341-364
[5]  
Bergh Joran, 1976, GRUND MATH WISS
[6]   Bilinear Sobolev-Poincare, Inequalities and Leibniz-Type Rules [J].
Bernicot, Frederic ;
Maldonado, Diego ;
Moen, Kabe ;
Naibo, Virginia .
JOURNAL OF GEOMETRIC ANALYSIS, 2014, 24 (02) :1144-1180
[7]   BILINEAR DISPERSIVE ESTIMATES VIA SPACE-TIME RESONANCES I: THE ONE-DIMENSIONAL CASE [J].
Bernicot, Frederic ;
Germain, Pierre .
ANALYSIS & PDE, 2013, 6 (03) :687-722
[8]   Boundedness of Smooth Bilinear Square Functions and Applications to Some Bilinear Pseudo-differential Operators [J].
Bernicot, Frederic ;
Shrivastava, Saurabh .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2011, 60 (01) :233-268
[9]   Bilinear oscillatory integrals and boundedness for new bilinear multipliers [J].
Bernicot, Frederic ;
Germain, Pierre .
ADVANCES IN MATHEMATICS, 2010, 225 (04) :1739-1785
[10]   CLASS OF BOUNDED PSEUDODIFFERENTIAL OPERATORS [J].
CALDERON, AP ;
VAILLANCOURT, R .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1972, 69 (05) :1185-+