Wavelet-Nonlinear Cointegration Prediction of Irrigation Water in the Irrigation District

被引:11
作者
Zhang, Jinping [1 ,2 ,3 ]
Li, Hongbin [1 ]
Shi, Xixi [1 ]
Hong, Yang [4 ]
机构
[1] Zhengzhou Univ, Sch Water Conservancy & Environm, 100 Sci Rd, Zhengzhou 450001, Henan, Peoples R China
[2] Zhengzhou Univ, Zhengzhou Key Lab Water Resource & Environm, Zhengzhou 450001, Henan, Peoples R China
[3] Henan Key Lab Groundwater Pollut Prevent & Rehabi, Zhengzhou 450001, Henan, Peoples R China
[4] Univ Oklahoma, Sch Civil Engn & Environm Sci, Norman, OK 73019 USA
基金
国家重点研发计划;
关键词
Wavelet-nonlinear cointegration prediction; Irrigation water; Rainfall; Crop water requirement; TIME-SERIES; ECONOMIC-GROWTH; NEURAL-NETWORK; RAINFALL; EVAPOTRANSPIRATION; MEMORY;
D O I
10.1007/s11269-019-02270-3
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Aiming at revealing the nonlinear relations between rainfall, crop water requirement and irrigation water in the irrigation district, and improving the accuracy of wavelet-cointegration prediction model proposed by the literature (Zhang et al. J Hydrol 544: 343-351, 2017), the nonlinear cointegration theory and wavelet neutral network method are introduced to construct the innovated wavelet- nonlinear cointegration prediction model of irrigation water. The results show that there are nonlinear cointegration relations amongst the decomposed time series of rainfall, crop water requirement and irrigation water. Compared with the wavelet- cointegration prediction model, the wavelet- nonlinear cointegration prediction model has the higher prediction accuracy, and all relative errors of the predicted values are around 2%, except 2004 and 2012.
引用
收藏
页码:2941 / 2954
页数:14
相关论文
共 36 条
  • [1] Extreme Learning Machines: A new approach for prediction of reference evapotranspiration
    Abdullah, Shafika Sultan
    Malek, M. A.
    Abdullah, Namiq Sultan
    Kisi, Ozgur
    Yap, Keem Siah
    [J]. JOURNAL OF HYDROLOGY, 2015, 527 : 184 - 195
  • [2] Economic growth and water use
    Cole, MA
    [J]. APPLIED ECONOMICS LETTERS, 2004, 11 (01) : 1 - 4
  • [3] Optimal Location and Setting of PRVs in WDS for Leakage Minimization
    Covelli, Carmine
    Cozzolino, Luca
    Cimorelli, Luigi
    Della Morte, Renata
    Pianese, Domenico
    [J]. WATER RESOURCES MANAGEMENT, 2016, 30 (05) : 1803 - 1817
  • [4] Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind speed data
    Doucoure, Boubacar
    Agbossou, Kodjo
    Cardenas, Alben
    [J]. RENEWABLE ENERGY, 2016, 92 : 202 - 211
  • [5] DURDU OF, 2010, ENG PPL RTIF NTELL, V23, P586, DOI DOI 10.1016/j.engappai.2009.09.015
  • [6] On the relevance of using artificial neural networks for estimating soil moisture content
    Elshorbagy, Amin
    Parasuraman, K.
    [J]. JOURNAL OF HYDROLOGY, 2008, 362 (1-2) : 1 - 18
  • [7] COINTEGRATION AND ERROR CORRECTION - REPRESENTATION, ESTIMATION, AND TESTING
    ENGLE, RF
    GRANGER, CWJ
    [J]. ECONOMETRICA, 1987, 55 (02) : 251 - 276
  • [8] ARMA based approaches for forecasting the tuple of wind speed and direction
    Erdem, Ergin
    Shi, Jing
    [J]. APPLIED ENERGY, 2011, 88 (04) : 1405 - 1414
  • [9] [樊智 Fan Zhi], 2005, [管理科学学报, Journal of management sciences in china], V8, P73
  • [10] [冯平 FENG Ping], 2009, [应用基础与工程科学学报, Journal of Basic Science and Engineering], V17, P716