Development, application and computational analysis of high-dimensional fluorescent antibody panels for single-cell flow cytometry

被引:128
作者
Brummelman, Jolanda [1 ]
Haftmann, Claudia [2 ]
Nunez, Nicolas Gonzalo [2 ]
Alvisi, Giorgia [1 ]
Mazza, Emilia M. C. [1 ]
Becher, Burkhard [2 ]
Lugli, Enrico [1 ,3 ]
机构
[1] Humanitas Clin & Res Ctr, Lab Translat Immunol, Milan, Italy
[2] Univ Zurich, Inst Expt Immunol, Lab Inflammat Res, Zurich, Switzerland
[3] Humanitas Clin & Res Ctr, Flow Cytometry Core, Milan, Italy
基金
瑞士国家科学基金会;
关键词
VISUALIZATION; IDENTIFICATION; FOXP3;
D O I
10.1038/s41596-019-0166-2
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The interrogation of single cells is revolutionizing biology, especially our understanding of the immune system. Flow cytometry is still one of the most versatile and high-throughput approaches for single-cell analysis, and its capability has been recently extended to detect up to 28 colors, thus approaching the utility of cytometry by time of flight (CyTOF). However, flow cytometry suffers from autofluorescence and spreading error (SE) generated by errors in the measurement of photons mainly at red and far-red wavelengths, which limit barcoding and the detection of dim markers. Consequently, development of 28-color fluorescent antibody panels for flow cytometry is laborious and time consuming. Here, we describe the steps that are required to successfully achieve 28-color measurement capability. To do this, we provide a reference map of the fluorescence spreading errors in the 28-color space to simplify panel design and predict the success of fluorescent antibody combinations. Finally, we provide detailed instructions for the computational analysis of such complex data by existing, popular algorithms (PhenoGraph and FIowSOM). We exemplify our approach by designing a high-dimensional panel to characterize the immune system, but we anticipate that our approach can be used to design any high-dimensional flow cytometry panel of choice. The full protocol takes a few days to complete, depending on the time spent on panel design and data analysis.
引用
收藏
页码:1946 / 1969
页数:24
相关论文
共 46 条
[1]   HyperLog - A flexible log-like transform for negative, zero, and positive valued data [J].
Bagwell, CB .
CYTOMETRY PART A, 2005, 64A (01) :34-42
[2]   A deep profiler's guide to cytometry [J].
Bendall, Sean C. ;
Nolan, Garry P. ;
Roederer, Mario ;
Chattopadhyay, Pratip K. .
TRENDS IN IMMUNOLOGY, 2012, 33 (07) :323-332
[3]   The Single-Cell Phenotypic Identity of Human CD8+ and CD4+ T Cells [J].
Brummelman, Jolanda ;
Pilipow, Karolina ;
Lugli, Enrico .
BIOLOGY OF T CELLS, PT A, 2018, 341 :63-124
[4]   High-dimensional single cell analysis identifies stem-like cytotoxic CD8+ T cells infiltrating human tumors [J].
Brummelman, Jolanda ;
Mazza, Emilia M. C. ;
Alvisi, Giorgia ;
Colombo, Federico S. ;
Grilli, Andrea ;
Mikulak, Joanna ;
Mavilio, Domenico ;
Alloisio, Marco ;
Ferrari, Francesco ;
Lopci, Egesta ;
Novellis, Pierluigi ;
Veronesi, Giulia ;
Lugli, Enrico .
JOURNAL OF EXPERIMENTAL MEDICINE, 2018, 215 (10) :2520-2535
[5]   Cytofkit: A Bioconductor Package for an Integrated Mass Cytometry Data Analysis Pipeline [J].
Chen, Hao ;
Lau, Mai Chan ;
Wong, Michael Thomas ;
Newell, Evan W. ;
Poidinger, Michael ;
Chen, Jinmiao .
PLOS COMPUTATIONAL BIOLOGY, 2016, 12 (09)
[6]   Human dendritic cell subsets: an update [J].
Collin, Matthew ;
Bigley, Venetia .
IMMUNOLOGY, 2018, 154 (01) :3-20
[7]   Guidelines for the use of flow cytometry and cell sorting in immunological studies [J].
Cossarizza, Andrea ;
Chang, Hyun-Dong ;
Radbruch, Andreas ;
Akdis, Mubeccel ;
Andrae, Immanuel ;
Annunziato, Francesco ;
Bacher, Petra ;
Barnaba, Vincenzo ;
Battistini, Luca ;
Bauer, Wolfgang M. ;
Baumgart, Sabine ;
Becher, Burkhard ;
Beisker, Wolfgang ;
Berek, Claudia ;
Blanco, Alfonso ;
Borsellino, Giovanna ;
Boulais, Philip E. ;
Brinkman, Ryan R. ;
Buescher, Martin ;
Busch, Dirk H. ;
Bushnell, Timothy P. ;
Cao, Xuetao ;
Cavani, Andrea ;
Chattopadhyay, Pratip K. ;
Cheng, Qingyu ;
Chow, Sue ;
Clerici, Mario ;
Cooke, Anne ;
Cosma, Antonio ;
Cosmi, Lorenzo ;
Cumano, Ana ;
Dang, Van Duc ;
Davies, Derek ;
De Biasi, Sara ;
Del Zotto, Genny ;
Della Bella, Silvia ;
Dellabona, Paolo ;
Deniz, Gunnur ;
Dessing, Mark ;
Diefenbach, Andreas ;
Di Santo, James ;
Dieli, Francesco ;
Dolf, Andreas ;
Donnenberg, Vera S. ;
Doerner, Thomas ;
Ehrhardt, Gotz R. A. ;
Endl, Elmar ;
Engel, Pablo ;
Engelhardt, Britta ;
Esser, Charlotte .
EUROPEAN JOURNAL OF IMMUNOLOGY, 2017, 47 (10) :1584-1797
[8]   Transcriptional Landscape of Human Tissue Lymphocytes Unveils Uniqueness of Tumor-Infiltrating T Regulatory Cells [J].
De Simone, Marco ;
Arrigoni, Alberto ;
Rossetti, Grazisa ;
Gruarin, Paola ;
Ranzani, Valeria ;
Politano, Claudia ;
Bonnal, Raoul J. P. ;
Provasi, Elena ;
Sarnicola, Maria Lucia ;
Panzeri, Ilaria ;
Moro, Monica ;
Crosti, Mariacristina ;
Mazzara, Saveria ;
Vaira, Valentina ;
Bosari, Silvano ;
Palleschi, Alessandro ;
Santambrogio, Luigi ;
Bovo, Giorgio ;
Zucchini, Nicola ;
Totis, Mauro ;
Gianotti, Luca ;
Cesana, Giancarlo ;
Perego, Roberto A. ;
Maroni, Nirvana ;
Ceretti, Andrea Pisani ;
Opocher, Enrico ;
De Francesco, Raffaele ;
Geginat, Jens ;
Stunnenberg, Hendrik G. ;
Abrignani, Sergio ;
Pagani, Massimiliano .
IMMUNITY, 2016, 45 (05) :1135-1147
[9]   Human memory T cells: generation, compartmentalization and homeostasis [J].
Farber, Donna L. ;
Yudanin, Naomi A. ;
Restifo, Nicholas P. .
NATURE REVIEWS IMMUNOLOGY, 2014, 14 (01) :24-35
[10]   Optimizing transformations for automated, high throughput analysis of flow cytometry data [J].
Finak, Greg ;
Perez, Juan-Manuel ;
Weng, Andrew ;
Gottardo, Raphael .
BMC BIOINFORMATICS, 2010, 11