Transformation of progressive waves propagating obliquely on gentle slope

被引:18
作者
Chen, YY [1 ]
Yang, BD
Tang, LW
Ou, SH
Hsu, JRC
机构
[1] Natl Sun Yat Sen Univ, Dept Marine Environm & Engn, Kaohsiung 804, Taiwan
[2] Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 701, Taiwan
关键词
wave propagation; slopes; transformations; mathematical models; perturbation;
D O I
10.1061/(ASCE)0733-950X(2004)130:4(162)
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This paper reports the results of a new mathematical derivation for the transformation of a progressive wave propagating obliquely on a gentle slope. On the basis of the conservation principle of wave motion and in a wave-ray coordinate system, an explicit expression for the velocity potential of the wave field is derived as a function of the bottom slope a perturbed to a second order in an Eulerian coordinate system. Wave profile is then obtained in the Lagrangian system. Together, these enable the description of the features of wave shoaling and refraction in the direction of wave propagation from deep to shallow water, particularly, the process of successive deformation of a wave profile.
引用
收藏
页码:162 / 169
页数:8
相关论文
共 22 条
[1]  
BIESEL F, 1952, 521 NBS, P243
[2]  
CHEN YY, 1992, P 14 OC ENG C TAIW T, P1
[3]  
CHEN YY, 2001, J COASTAL OCEAN ENG, V1, P35
[4]  
CHEN YY, 1997, P 19 OC ENG C TAIW T, P112
[5]  
CHEN YY, 1999, P 21 OC ENG C TAIW, P165
[6]   ON SLOWLY-VARYING STOKES WAVES [J].
CHU, VH ;
MEI, CC .
JOURNAL OF FLUID MECHANICS, 1970, 41 :873-+
[7]   STEEP GRAVITY-WAVES IN WATER OF ARBITRARY UNIFORM DEPTH [J].
COKELET, ED .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1977, 286 (1335) :183-230
[8]  
DEAN RG, 1991, WATER WAVE MECH ENG, P106
[9]  
Eckart C., 1952, GRAV WAV P NBS SEM S, P165
[10]   Oblique wave incidence on a plane beach: The classical problem revisited [J].
Ehrenmark, UT .
JOURNAL OF FLUID MECHANICS, 1998, 368 :291-319