Potential of laponite incorporated oxidized alginate-gelatin (ADA-GEL) composite hydrogels for extrusion-based 3D printing

被引:64
作者
Cai, Fei-Fan [1 ]
Heid, Susanne [1 ]
Boccaccini, Aldo R. [1 ]
机构
[1] Univ Erlangen Nurnberg, Inst Biomat, Dept Mat Sci & Engn, D-91058 Erlangen, Germany
关键词
ADA‐ GEL; biomaterial; bioprinting; composite; hydrogel; laponite; nanoclay; scaffold; tissue engineering; NANOCOMPOSITE HYDROGELS; SWELLING BEHAVIOR; BIOCOMPATIBILITY; MICROSTRUCTURE; FABRICATION; RD;
D O I
10.1002/jbm.b.34771
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
The concept of adding inorganic fillers into hydrogels to form hydrogel nanocomposites often provides advantageous properties which can be exploited for successful 3D biofabrication. In this study, a new composite hydrogel combining oxidized alginate-gelatin (ADA-GEL) hydrogel and laponite nanoclay as inorganic nanofiller was successfully developed and characterized. The results showed that the addition of 0.5% (wt/vol) laponite nanoplatelets improved the printability of ADA-GEL hydrogels enabling the fabrication of detailed structures since a low effect of material spreading and reduced tendency to pore closure appeared. Furthermore, a comparison of different needle types (cylindrical and conical; same inner diameter of 250 mu m) in filament fusion test showed that the pattern dispensed by cylindrical tip has enhanced printing accuracy and pattern fidelity when compared with the pattern from conical tip. A glass flip test determined a processing window of 1-2 h after composite ink preparation. Overall, laponite/ADA-GEL hydrogel composites are confirmed as promising inks for 3D bioprinting.
引用
收藏
页码:1090 / 1104
页数:15
相关论文
共 48 条
[1]   Direct-write 3D printing and characterization of a GelMA-based biomaterial for intracorporeal tissue [J].
Adib, A. Asghari ;
Sheikhi, A. ;
Shahhosseini, M. ;
Simeunovic, A. ;
Wu, S. ;
Castro, C. E. ;
Zhao, R. ;
Khademhosseini, A. ;
Hoelzle, D. J. .
BIOFABRICATION, 2020, 12 (04)
[2]   Development of a clay based bioink for 3D cell printing for skeletal application [J].
Ahlfeld, T. ;
Cidonio, G. ;
Kilian, D. ;
Duin, S. ;
Akkineni, A. R. ;
Dawson, J. I. ;
Yang, S. ;
Lode, A. ;
Oreffo, R. O. C. ;
Gelinsky, M. .
BIOFABRICATION, 2017, 9 (03)
[3]   3D bio-printing technology for body tissues and organs regeneration [J].
Biazar, Esmaeil ;
Najafi S, Masoumeh ;
Heidari K, Saeed ;
Yazdankhah, Meysam ;
Rafiei, Ataollah ;
Biazar, Dariush .
Journal of Medical Engineering and Technology, 2018, 42 (03) :187-202
[4]   Unusual swelling behavior of polymer-clay nanocomposite hydrogels [J].
Can, Volkan ;
Abdurrahmanoglu, Suzan ;
Okay, Oguz .
POLYMER, 2007, 48 (17) :5016-5023
[5]   Laponite-based Nanomaterials for Biomedical Applications: A Review [J].
Das, Sabya S. ;
Neelam ;
Hussain, Kashif ;
Singh, Sima ;
Hussain, Afzal ;
Faruk, Abdul ;
Tebyetekerwa, Mike .
CURRENT PHARMACEUTICAL DESIGN, 2019, 25 (04) :424-443
[6]   Rheological evaluation of Laponite/alginate inks for 3D extrusion-based printing [J].
Davila, Jose Luis ;
d'Avila, Marcos Akira .
INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2019, 101 (1-4) :675-686
[7]   Laponite as a rheology modifier of alginate solutions: Physical gelation and aging evolution [J].
Davila, Jose Luis ;
d'Avila, Marcos Akira .
CARBOHYDRATE POLYMERS, 2017, 157 :1-8
[8]   3D bioprinting for biomedical devices and tissue engineering: A review of recent trends and advances [J].
Derakhshanfar, Soroosh ;
Mbeleck, Rene ;
Xu, Kaige ;
Zhang, Xingying ;
Zhong, Wen ;
Xing, Malcolm .
BIOACTIVE MATERIALS, 2018, 3 (02) :144-156
[9]   Magnesium-Containing Bioactive Glasses for Biomedical Applications [J].
Diba, Mani ;
Tapia, Felipe ;
Boccaccini, Aldo R. ;
Strobel, Leonie A. .
INTERNATIONAL JOURNAL OF APPLIED GLASS SCIENCE, 2012, 3 (03) :221-253
[10]   Cell-laden alginate dialdehyde-gelatin hydrogels formed in 3D printed sacrificial gel [J].
Dranseikiene, Dalia ;
Schruefer, Stefan ;
Schubert, Dirk W. ;
Reakasame, Supachai ;
Boccaccini, Aldo R. .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN MEDICINE, 2020, 31 (03)