Comparison of harvesting methods for microalgae Chlorella sp. and its potential use as a biodiesel feedstock

被引:59
作者
Ahmad, A. L. [1 ]
Yasin, N. H. Mat [1 ]
Derek, C. J. C. [1 ]
Lim, J. K. [1 ]
机构
[1] Univ Sains Malaysia, Sch Chem Engn, Perai 14300, Pulau Pinang, Malaysia
关键词
centrifugation; coagulation; microfiltration; biodiesel; microalgal biomass; COAGULATION-MEMBRANE FILTRATION; TANGENTIAL FLOW FILTRATION; BIOMASS; WATER; MICROFILTRATION; CHITOSAN; GROWTH; FLOCCULATION; SEPARATION; BIOFUELS;
D O I
10.1080/09593330.2014.900117
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Three methods for harvesting Chlorella sp. biomass were analysed in this paper - centrifugation, membrane microfiltration and coagulation: there was no significant difference between the total amount of biomass obtained by centrifugation and membrane microfiltration, i.e. 0.1174 +/- 0.0308 and 0.1145 +/- 0.0268g, respectively. Almost the same total lipid content was obtained using both methods, i.e. 27.96 +/- 0.77 and 26.43 +/- 0.67% for centrifugation and microfiltration, respectively. However, harvesting by coagulation resulted in the lowest biomass and lipid content. Similar fatty acid profiles were obtained for all of the harvesting methods, indicating that the main components were palmitic acid (C16:0), oleic acid (C18:1) and linoleic acid (C18:2). However, the amounts of the individual fatty acids were higher for microfiltration than for centrifugation and coagulation; coagulation performed the most poorly in this regard by producing the smallest amount of fatty acids (41.61 +/- 6.49mg/gdw). The harvesting method should also be selected based on the cost benefit and energy requirements. The membrane filtration method offers the advantages of currently decreasing capital costs, a high efficiency and low maintenance and energy requirements and is thus the most efficient method for microalgae harvesting.
引用
收藏
页码:2244 / 2253
页数:10
相关论文
共 53 条
[1]   Synthesis of a base-stock for electrical insulating fluid based on palm kernel oil [J].
Abdelmalik, A. A. ;
Abbott, A. P. ;
Fothergill, J. C. ;
Dodd, S. ;
Harris, R. C. .
INDUSTRIAL CROPS AND PRODUCTS, 2011, 33 (02) :532-536
[2]   Chemical cleaning of a cross-flow microfiltration membrane fouled by microalgal biomass [J].
Ahmad, A. L. ;
Yasin, N. H. Mat ;
Derek, C. J. C. ;
Lim, J. K. .
JOURNAL OF THE TAIWAN INSTITUTE OF CHEMICAL ENGINEERS, 2014, 45 (01) :233-241
[3]  
Ahmad AL, 2013, MEMBR WATER TREAT, V4, P143
[4]   Crossflow microfiltration of microalgae biomass for biofuel production [J].
Ahmad, A. L. ;
Yasin, N. H. Mat ;
Derek, C. J. C. ;
Lim, J. K. .
DESALINATION, 2012, 302 :65-70
[5]   Optimization of microalgae coagulation process using chitosan [J].
Ahmad, A. L. ;
Yasin, N. H. Mat ;
Derek, C. J. C. ;
Lim, J. K. .
CHEMICAL ENGINEERING JOURNAL, 2011, 173 (03) :879-882
[6]   Microalgae as a sustainable energy source for biodiesel production: A review [J].
Ahmad, A. L. ;
Yasin, N. H. Mat ;
Derek, C. J. C. ;
Lim, J. K. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2011, 15 (01) :584-593
[7]   Microfiltration membrane fouling and cake behavior during algal filtration [J].
Babel, Sandhya ;
Takizawa, Satoshi .
DESALINATION, 2010, 261 (1-2) :46-51
[8]   Harvesting microalgal biomass using submerged microfiltration membranes [J].
Bilad, M. R. ;
Vandamme, D. ;
Foubert, I. ;
Muylaert, K. ;
Vankelecom, Ivo F. J. .
BIORESOURCE TECHNOLOGY, 2012, 111 :343-352
[9]  
BLIGH EG, 1959, CAN J BIOCHEM PHYS, V37, P911
[10]   Effects of flocculants on lipid extraction and fatty acid composition of the microalgae Nannochloropsis oculata and Thalassiosira weissflogii [J].
Borges, Lucelia ;
Moron-Villarreyes, Joaquin A. ;
Montes D'Oca, Marcelo G. ;
Abreu, Paulo Cesar .
BIOMASS & BIOENERGY, 2011, 35 (10) :4449-4454