MnO2@SnO2 core-shell heterostructured nanorods for supercapacitors

被引:40
作者
Dai, Y. M. [1 ,2 ,3 ]
Tang, S. C. [1 ,2 ]
Peng, J. Q. [3 ]
Chen, H. Y. [3 ]
Ba, Z. X. [3 ]
Ma, Y. J. [1 ,2 ]
Meng, X. K. [1 ,2 ]
机构
[1] Nanjing Univ, Natl Lab Solid State Microstruct, Inst Mat Engn, Nanjing, Jiangsu, Peoples R China
[2] Nanjing Univ, Coll Engn & Appl Sci, Nanjing, Jiangsu, Peoples R China
[3] Nanjing Inst Technol, Sch Mat Engn, Nanjing, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Supercapacitors; Manganese oxide; Tin oxide; Nanocomposites; Energy storage and conversion; MNO2; NANOWIRES; ELECTRODES;
D O I
10.1016/j.matlet.2014.05.090
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A facile, low-cost synthesis of MnO2@SnO2 core-shell heterostructured nanorods with superior super-capacitance is proposed. The synthesis involves sensitizing MnO2 nanorods with an aqueous SnCl2 solution to ensure the formation of a thin, uniform, and complete shell layer. The SnO2 coatings have rough surfaces and their thickness is about 18 nm. The MnO2@SnO2 composites have a specific capacitance of 367.5 F/g at 50 mV/s in 1 M Na2SO4, which is about four and six times of the pure MnO2 nanorods and SnO2 products. Meanwhile, they have 91.3% capacitance retention over 2000 cycles, which is much better than pure MnO2 nanorods. The remarkable performances with a low-cost imply that they have potential for supercapacitors applications. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:107 / 110
页数:4
相关论文
共 16 条
  • [1] Ultracapacitors: why, how, and where is the technology
    Burke, A
    [J]. JOURNAL OF POWER SOURCES, 2000, 91 (01) : 37 - 50
  • [2] Coating MnO2 nanowires by silver nanoparticles for an improvement of capacitance performance
    Dai, Y. M.
    Tang, S. C.
    Ba, Z. X.
    Zhu, S. S.
    Wang, Q.
    Wang, C.
    Meng, X. K.
    [J]. MATERIALS LETTERS, 2014, 117 : 104 - 107
  • [3] Silver Nanoparticle-Induced Growth of Nanowire-Covered Porous MnO2 Spheres with Superior Supercapacitance
    Dai, Yuming
    Tang, Shaochun
    Vongehr, Sascha
    Meng, Xiangkang
    [J]. ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2014, 2 (04): : 692 - 698
  • [4] Mild hydrothermal synthesis of γ-MnO2 nanostructures and their phase transformation to α-MnO2 nanowires
    Khan, Yaqoob
    Durrani, Shahid Khan
    Mehmood, Mazhar
    Khan, Muhammad Riaz
    [J]. JOURNAL OF MATERIALS RESEARCH, 2011, 26 (17) : 2268 - 2275
  • [5] Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors
    Lang, Xingyou
    Hirata, Akihiko
    Fujita, Takeshi
    Chen, Mingwei
    [J]. NATURE NANOTECHNOLOGY, 2011, 6 (04) : 232 - 236
  • [6] Low Temperature Solution-Processed Zinc Tin Oxide Thin Film Transistor with O2 Plasma Treatment
    Lee, Jeong-Soo
    Kim, Yong-Jin
    Lee, Yong-Uk
    Cho, Seung-Hwan
    Kim, Yong-Hoon
    Kwon, Jang-Yeon
    Han, Min-Koo
    [J]. THIN FILM TRANSISTORS 10 (TFT 10), 2010, 33 (05): : 283 - 288
  • [7] Synthesis of Fe3O4@SnO2 core-shell nanorod film and its application as a thin-film supercapacitor electrode
    Li, Ruizhi
    Ren, Xiao
    Zhang, Fan
    Du, Cheng
    Liu, Jinping
    [J]. CHEMICAL COMMUNICATIONS, 2012, 48 (41) : 5010 - 5012
  • [8] Facile synthesis of manganese oxide/aligned carbon nanotubes over aluminium foil as 3D binder free cathodes for lithium ion batteries
    Lou, Fengliu
    Zhou, Haitao
    Huang, Fan
    Vullum-Bruer, Fride
    Trung Dung Tran
    Chen, De
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (11) : 3757 - 3767
  • [9] A novel concept of hybrid capacitor based on manganese oxide materials
    Ma, Sang-Bok
    Nam, Kyung-Wan
    Yoon, Won-Sub
    Yang, Xiao-Qing
    Ahn, Kyun-Young
    Oh, Ki-Hwan
    Kim, Kwang-Bum
    [J]. ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (12) : 2807 - 2811
  • [10] Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance
    Mai, Li-Qiang
    Yang, Fan
    Zhao, Yun-Long
    Xu, Xu
    Xu, Lin
    Luo, Yan-Zhu
    [J]. NATURE COMMUNICATIONS, 2011, 2