TORSION OF ELLIPTIC CURVES OVER CYCLIC CUBIC FIELDS

被引:10
作者
Derickx, Maarten [1 ]
Najman, Filip [2 ]
机构
[1] Univ Groningen, Johann Bernoulli Inst, Nijenborgh 9, NL-9747 AG Groningen, Netherlands
[2] Univ Zagreb, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia
关键词
Elliptic curves; modular curves; rational points; POINTS; FAMILIES;
D O I
10.1090/mcom/3408
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We determine all the possible torsion groups of elliptic curves over cyclic cubic fields, over non-cyclic totally real cubic fields, and over complex cubic fields.
引用
收藏
页码:2443 / 2459
页数:17
相关论文
共 21 条
[1]  
[Anonymous], 1978, I HAUTES ETUDES SCI
[2]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[3]   Ranks of Elliptic Curves with Prescribed Torsion over Number Fields [J].
Bosman, Johan ;
Bruin, Peter ;
Dujella, Andrej ;
Najman, Filip .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2014, 2014 (11) :2885-2923
[4]   The Mordell-Weil sieve: proving non-existence of rational points on curves [J].
Bruin, Nils ;
Stoll, Michael .
LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2010, 13 :272-306
[5]   Fields of definition of elliptic curves with prescribed torsion [J].
Bruin, Peter ;
Najman, Filip .
ACTA ARITHMETICA, 2017, 181 (01) :85-95
[6]  
Derickx M., PREPRINT
[7]  
Derickx M., MAGMA PACKAGE CHABAU
[8]   Rational families of 17-torsion points of elliptic curves over number fields [J].
Derickx, Maarten ;
Mazur, Barry ;
Kamienny, Sheldon .
NUMBER THEORY RELATED TO MODULAR CURVES: MOMOSE MEMORIAL VOLUME, 2018, 701 :81-104
[9]   Vanishing and non-vanishing Dirichlet twists of L-functions of elliptic curves [J].
Fearnley, Jack ;
Kisilevsky, Hershy ;
Kuwata, Masato .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2012, 86 :539-557
[10]   On the torsion of elliptic curves over cubic number fields [J].
Jeon, D ;
Kim, CH ;
Schweizer, A .
ACTA ARITHMETICA, 2004, 113 (03) :291-301