The linear boltzmann equation for long-range forces: A derivation from particle systems

被引:31
作者
Desvillettes, L
Pulvirenti, M
机构
[1] Ecole Normale Super Cachan, CMLA, F-94235 Cachan, France
[2] Univ Roma 1 La Sapienza, Dipartimento Matemat, I-00185 Rome, Italy
关键词
D O I
10.1142/S0218202599000506
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we consider a particle moving in a random distribution of obstacles. Each obstacle generates an inverse power law potential epsilon(s)/\x\(s), where epsilon is a small parameter and s > 2. Such a rescaled potential is truncated at distance epsilon(gamma-1), where gamma is an element of]0, 1[is suitably large. We also assume that the scatterer density is diverging as epsilon(-d+1), where d is the dimension of the physical space. We prove that, as epsilon --> 0 (the Boltzmann-Grad limit), the probability density of a test particle converges to a solution of the linear (uncutoff) Boltzmann equation with the cross-section relative to the potential V(x) = \x\(-s).
引用
收藏
页码:1123 / 1145
页数:23
相关论文
共 11 条
[1]   INTERMOLECULAR FORCES OF INFINITE RANGE AND THE BOLTZMANN-EQUATION [J].
ARKERYD, L .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1981, 77 (01) :11-21
[2]   ON THE BOLTZMANN-EQUATION FOR THE LORENTZ GAS [J].
BOLDRIGHINI, C ;
BUNIMOVICH, LA ;
SINAI, YG .
JOURNAL OF STATISTICAL PHYSICS, 1983, 32 (03) :477-501
[3]  
BOURGAIN J, DISTRIBUTION FREE PA
[4]  
Cercignani C, 1994, MATH THEORY DILUTE G
[5]   ABOUT THE REGULARIZING PROPERTIES OF THE NON-CUT-OFF KAC EQUATION [J].
DESVILLETTES, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 168 (02) :417-440
[6]  
GALAVOTTI G., 1973, 358 U ROM I FIS
[7]  
Goudon T, 1997, CR ACAD SCI I-MATH, V324, P265
[8]  
GRAD, 1958, FLUGGES HDB PHYS, V12, P205
[9]  
Lanford O. E., 1975, LECT NOTE PHYS, V38, P1
[10]   KINETIC-EQUATIONS FROM HAMILTONIAN-DYNAMICS - MARKOVIAN LIMITS [J].
SPOHN, H .
REVIEWS OF MODERN PHYSICS, 1980, 52 (03) :569-615