POD a-posteriori error analysis for optimal control problems with mixed control-state constraints

被引:2
作者
Gubisch, Martin [1 ]
Volkwein, Stefan [1 ]
机构
[1] Univ Konstanz, Dept Math & Stat, D-78457 Constance, Germany
关键词
Optimal control; Model reduction; Proper orthogonal decomposition; A-posteriori error estimates; PROPER ORTHOGONAL DECOMPOSITION;
D O I
10.1007/s10589-014-9636-1
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this work linear-quadratic optimal control problems for parabolic equations with mixed control-state constraints are considered. These problems arise when a Lavrentiev regularization is utilized for state constrained linear-quadratic optimal control problems. For the numerical solution a Galerkin discretization is applied utilizing proper orthogonal decomposition (POD). Based on a perturbation method it is determined how far the suboptimal control, computed on the basis of the POD method, is from the (unknown) exact one. Numerical examples illustrate the theoretical results. In particular, the POD Galerkin scheme is applied to a problem with state constraints.
引用
收藏
页码:619 / 644
页数:26
相关论文
共 21 条
[1]  
Afanasiev K, 2001, LECT NOTES PURE APPL, V216, P317
[2]  
[Anonymous], 1970, COMPUTER SCI APPL MA
[3]  
[Anonymous], 1971, OPTIMAL CONTROL SYST
[4]  
[Anonymous], 1995, ABSTRACT LINEAR THEO
[5]  
ARIAN E, 2000, 200025 ICASE
[6]  
Dautray R., 2000, Mathematical Analysis and Numerical Methods for Science and Technology, V5
[7]   OPTIMALITY, STABILITY, AND CONVERGENCE IN NONLINEAR CONTROL [J].
DONTCHEV, AL ;
HAGER, WW ;
POORE, AB ;
YANG, B .
APPLIED MATHEMATICS AND OPTIMIZATION, 1995, 31 (03) :297-326
[8]  
Evans L.C., 2008, Partial differential equations
[9]  
Gubisch M., 2013, Proper Orthogonal Decomposition for linearquadratic optimal control
[10]   MESH-INDEPENDENCE AND PRECONDITIONING FOR SOLVING PARABOLIC CONTROL PROBLEMS WITH MIXED CONTROL-STATE CONSTRAINTS [J].
Hintermueller, Michael ;
Kopacka, Ian ;
Volkwein, Stefan .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2009, 15 (03) :626-652