Symplectic Level-Rank Duality via Tensor Categories

被引:0
作者
Ostrik, Victor [1 ,2 ]
Rowell, Eric C. [3 ]
Sun, Michael
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
[2] Natl Res Univ, Higher Sch Econ, Lab Algebra Geometry, Moscow, Russia
[3] Texas A&M Univ, Dept Math, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Braided fusion category; affine Lie algebra; level-rank duality; VERTEX OPERATOR-ALGEBRAS; LIE-ALGEBRAS; SPIN;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give two proofs of a level-rank duality for braided fusion categories obtained from quantum groups of type C at roots of unity. The first proof uses conformal embeddings, while the second uses a classification of braided fusion categories associated with quantum groups of type C at roots of unity. In addition we give a similar result for non-unitary braided fusion categories quantum groups of types B and C at odd roots of unity.
引用
收藏
页码:909 / 924
页数:16
相关论文
共 30 条
  • [1] [Anonymous], 2015, Oxford Classic Texts in the Physical Sciences
  • [2] [Anonymous], 2017, ARXIV170505017
  • [3] Bakalov B., 2001, U LECT SERIES, V21
  • [4] Creutzig T., 2019, ARXIV190600119
  • [5] Fusion categories for affine vertex algebras at admissible levels
    Creutzig, Thomas
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2019, 25 (02):
  • [6] Braided Tensor Categories of Admissible Modules for Affine Lie Algebras
    Creutzig, Thomas
    Huang, Yi-Zhi
    Yang, Jinwei
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2018, 362 (03) : 827 - 854
  • [7] The Witt group of non-degenerate braided fusion categories
    Davydov, Alexei
    Muger, Michael
    Nikshych, Dmitri
    Ostrik, Victor
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2013, 677 : 135 - 177
  • [8] On the structure of the Witt group of braided fusion categories
    Davydov, Alexei
    Nikshych, Dmitri
    Ostrik, Victor
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2013, 19 (01): : 237 - 269
  • [9] On braided fusion categories I
    Drinfeld, Vladimir
    Gelaki, Shlomo
    Nikshych, Dmitri
    Ostrik, Victor
    [J]. SELECTA MATHEMATICA-NEW SERIES, 2010, 16 (01): : 1 - 119
  • [10] Edie-Michell Cain, 2020, ARXIV200203220