Polaron dynamics and Peierls-Nabarro barrier in a discrete molecular chain

被引:4
|
作者
Brizhik, L [1 ]
Cruzeiro-Hansson, L
Eremko, A
Olkhovska, Y
机构
[1] Bogolyubov Inst Theoret Phys, UA-252143 Kiev, Ukraine
[2] Heriot Watt Univ, Dept Math, Edinburgh EH14 4AS, Midlothian, Scotland
[3] Inst Programming Syst, UA-252187 Kiev, Ukraine
基金
英国惠康基金;
关键词
polaron; soliton; Peierls-Nabarro barrier; electron-phonon coupling; pinning;
D O I
10.1016/S0379-6779(99)00209-X
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The dynamics of an autolocalized quasiparticle in a discrete lattice is investigated analytically and numerically, taking into account the quasiparticle interaction with acoustic phonons. The dependence of the parameters of a soliton-like polaron on the carrying wave vector at large values of the latter is shown to differ from those predicted by the continuum models. We find that the saturation of the polaron velocity in a discrete system occurs below the sound velocity in the chain, a result which is in agreement with the experimental observations of the saturation of the drift velocity in some low-dimensional compounds. The potential of the Peierls-Nabarro relief caused by the lattice discreteness is calculated using perturbation theory, and pinning of a soliton by this barrier is studied numerically. For strongly localized, narrow polarons a critical value of the wave vector is needed to overcome the intersite barrier. (C) 2000 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:113 / 116
页数:4
相关论文
共 50 条
  • [1] Soliton dynamics and Peierls-Nabarro barrier in a discrete molecular chain
    Brizhik, L
    Eremko, A
    Cruzeiro-Hansson, L
    Olkhovska, Y
    PHYSICAL REVIEW B, 2000, 61 (02) : 1129 - 1141
  • [2] A quantum Peierls-Nabarro barrier
    Speight, JM
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2000, 33 (26): : 4741 - 4754
  • [3] A discrete phi(4) system without a Peierls-Nabarro barrier
    Speight, JM
    NONLINEARITY, 1997, 10 (06) : 1615 - 1625
  • [4] The topological origin of the Peierls-Nabarro barrier
    Hocking, Brook J.
    Ansell, Helen S.
    Kamien, Randall D.
    Machon, Thomas
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2022, 478 (2258):
  • [5] Discrete Solitary Waves in Systems with Nonlocal Interactions and the Peierls-Nabarro Barrier
    Jenkinson, M.
    Weinstein, M. I.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 351 (01) : 45 - 94
  • [6] Discrete systems free of the Peierls-Nabarro potential
    Dmitriev, S. V.
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (35-39) : 4121 - 4125
  • [7] Peierls-Nabarro barrier and protein loop propagation
    Sieradzan, Adam K.
    Niemi, Antti
    Peng, Xubiao
    PHYSICAL REVIEW E, 2014, 90 (06):
  • [8] THE CRITICAL STRESS IN A DISCRETE PEIERLS-NABARRO MODEL
    OHSAWA, K
    KOIZUMI, H
    KIRCHNER, HOK
    SUZUKI, T
    PHILOSOPHICAL MAGAZINE A-PHYSICS OF CONDENSED MATTER STRUCTURE DEFECTS AND MECHANICAL PROPERTIES, 1994, 69 (01): : 171 - 181
  • [9] Homogenization of the Peierls-Nabarro model for dislocation dynamics
    Monneau, Regis
    Patrizi, Stefania
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (07) : 2064 - 2105
  • [10] DISCRETE DISLOCATION DYNAMICS WITH ANNIHILATION AS THE LIMIT OF THE PEIERLS-NABARRO MODEL IN ONE DIMENSION
    VAN Meurs, Patrick
    Patrizi, Stefania
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2024, 56 (01) : 197 - 233