Visualization of large-scale correlations in gene expressions

被引:4
作者
Eriksen, K. A. [1 ]
Hornquist, M. [2 ]
Sneppen, K. [3 ]
机构
[1] NORDITA, Blegdamsvej 17, DK-2100 Copenhagen, Denmark
[2] Linkoping Univ, Dept Sci & Technol, Campus Norrkoping, S-60174 Norrkoping, Sweden
[3] Norwegian Univ Sci & Technol, Dept Phys, N-7491 Trondheim, Norway
关键词
Correlation; Gene expression; Visualization; Lethal;
D O I
10.1007/s10142-004-0114
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Large-scale expression data are today measured for several thousands of genes simultaneously. Furthermore, most genes are being categorized according to their properties. This development has been followed by an exploration of theoretical tools to integrate these diverse data types. A key problem is the large noise-level in the data. Here, we investigate ways to extract the remaining signals within these noisy data sets. We find large-scale correlations within data from Saccharomyces cerevisiae with respect to properties of the encoded proteins. These correlations are visualized in a way that is robust to the underlying noise in the measurement of the individual gene expressions. In particular, for S. cerevisiae we observe that the proteins corresponding to the 400 highest expressed genes typically are localized to the cytoplasm. These most expressed genes are not essential for cell survival.
引用
收藏
页码:241 / 245
页数:5
相关论文
共 13 条
[1]  
Cherry JM, 2001, SACCHAROMYCES GGENOM
[2]   YPD™, PombePD™ and WormPD™:: model organism volumes of the BioKnowledge™ Library, an integrated resource for protein information [J].
Costanzo, MC ;
Crawford, ME ;
Hirschman, JE ;
Kranz, JE ;
Olsen, P ;
Robertson, LS ;
Skrzypek, MS ;
Braun, BR ;
Hopkins, KL ;
Kondu, P ;
Lengieza, C ;
Lew-Smith, JE ;
Tillberg, M ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 2001, 29 (01) :75-79
[3]   The Yeast Proteome Database (YPD) and Caenorhabditis elegans Proteome Database (WormPD):: comprehensive resources for the organization and comparison of model organism protein information [J].
Costanzo, MC ;
Hogan, JD ;
Cusick, ME ;
Davis, BP ;
Fancher, AM ;
Hodges, PE ;
Kondu, P ;
Lengieza, C ;
Lew-Smith, JE ;
Lingner, C ;
Roberg-Perez, KJ ;
Tillberg, M ;
Brooks, JE ;
Garrels, JI .
NUCLEIC ACIDS RESEARCH, 2000, 28 (01) :73-76
[4]   Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring [J].
Golub, TR ;
Slonim, DK ;
Tamayo, P ;
Huard, C ;
Gaasenbeek, M ;
Mesirov, JP ;
Coller, H ;
Loh, ML ;
Downing, JR ;
Caligiuri, MA ;
Bloomfield, CD ;
Lander, ES .
SCIENCE, 1999, 286 (5439) :531-537
[5]  
Gustafsson M, 2004, ARXIV
[6]   Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data [J].
Ideker, T ;
Thorsson, V ;
Siegel, AF ;
Hood, LE .
JOURNAL OF COMPUTATIONAL BIOLOGY, 2000, 7 (06) :805-817
[7]  
Jensen LJ, 2000, BIOINFORMATICS, V16, P326
[8]   Gene selection for sample classification based on gene expression data: study of sensitivity to choice of parameters of the GA/KNN method [J].
Li, LP ;
Weinberg, CR ;
Darden, TA ;
Pedersen, LG .
BIOINFORMATICS, 2001, 17 (12) :1131-1142
[9]   Microarray data normalization and transformation [J].
Quackenbush, J .
NATURE GENETICS, 2002, 32 (Suppl 4) :496-501
[10]   An efficient and robust statistical modeling approach to discover differentially expressed genes using genomic expression profiles [J].
Thomas, JG ;
Olson, JM ;
Tapscott, SJ ;
Zhao, LP .
GENOME RESEARCH, 2001, 11 (07) :1227-1236