High energy density hybrid Mg2+/Li+ battery with superior ultra-low temperature performance

被引:67
作者
Zhang, Zhonghua [1 ,2 ]
Xu, Huimin [3 ]
Cui, Zili [1 ]
Hu, Pu [1 ]
Chai, Jingchao [1 ]
Du, Huiping [1 ]
He, Jianjiang [1 ]
Zhang, Jianjun [1 ]
Zhou, Xinhong [3 ]
Han, Pengxian [1 ]
Cui, Guanglei [1 ]
Chen, Liquan [4 ]
机构
[1] Chinese Acad Sci, Qingdao Ind Energy Storage Res Inst, Qingdao Inst Bioenergy & Bioproc Technol, Qingdao 266101, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100190, Peoples R China
[3] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, Qingdao 266042, Peoples R China
[4] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Inst Phys, Beijing 102488, Peoples R China
基金
国家高技术研究发展计划(863计划); 中国国家自然科学基金;
关键词
RECHARGEABLE MAGNESIUM BATTERIES; ELECTROLYTE-SOLUTIONS; CURRENT COLLECTORS; MG BATTERIES; ION BATTERY; CATHODE; STABILITY; CHEMISTRY; CORROSION; STORAGE;
D O I
10.1039/c5ta09591c
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of high energy density rechargeable Mg-based batteries operating in a wide electrochemical window and ultra-low temperature remains a great challenge owing to parasitic side reactions between electrolytes and battery components when examined at high operating potentials (above 2.0 V vs. Mg2+/Mg). Herein we propose a flexible pyrolytic graphitic film (GF) as a reliable current collector of high-voltage cathodes for a hybrid Mg2+/Li+ battery within a pouch cell configuration. The utilization of such a highly electrochemical stable GF unlocks the critical bottleneck of incompatibility among all battery parts, especially parasitic corrosive reactions between electrolytes and currently available current collectors, which takes a big step forward towards the practical applications of Mg-based batteries. With an operating potential of 2.4 V, the hybrid Mg2+/Li+ battery designed by us can deliver a maximum energy density of 382.2 W h kg(-1), which significantly surpasses that of the conventional Mg battery (about 60 W h kg(-1)), and the Al battery (about 40 W h kg(-1)) as well as the state-of-the-art hybrid Na/Mg and Li/Mg batteries. The electrochemical property of the hybrid Mg2+/Li+ battery is also characterized by higher rate capability (68.8 mA h g(-1) at 3.0C), higher coulombic efficiency of 99.5%, and better cyclic stability (98% capacity retention after 200 cycles at 1.0C). In addition, the designed hybrid battery delivers excellent electrochemical performance at an ultra-low temperature of -40 degrees C, at which it retains 77% capacity compared to that of room temperature. Our strategy opens up a new possibility for widespread applications of graphitic current collectors towards high energy rechargeable Mg-based hybrid batteries, especially applied in polar regions, aerospace, and deep offshore waters.
引用
收藏
页码:2277 / 2285
页数:9
相关论文
共 29 条
[1]   A COMPARATIVE-ANALYSIS OF STRUCTURAL AND SURFACE EFFECTS IN THE ELECTROCHEMICAL CORROSION OF CARBONS [J].
ANTONUCCI, PL ;
PINO, L ;
GIORDANO, N ;
PINNA, G .
MATERIALS CHEMISTRY AND PHYSICS, 1989, 21 (05) :495-506
[2]   Prototype systems for rechargeable magnesium batteries [J].
Aurbach, D ;
Lu, Z ;
Schechter, A ;
Gofer, Y ;
Gizbar, H ;
Turgeman, R ;
Cohen, Y ;
Moshkovich, M ;
Levi, E .
NATURE, 2000, 407 (6805) :724-727
[3]   Hybrid system for rechargeable magnesium battery with high energy density [J].
Chang, Zheng ;
Yang, Yaqiong ;
Wang, Xiaowei ;
Li, Minxia ;
Fu, Zhengwen ;
Wu, Yuping ;
Holze, Rudolf .
SCIENTIFIC REPORTS, 2015, 5
[4]   High performance batteries based on hybrid magnesium and lithium chemistry [J].
Cheng, Yingwen ;
Shao, Yuyan ;
Ji-Guang Zhang ;
Sprenkle, Vincent L. ;
Liu, Jun ;
Li, Guosheng .
CHEMICAL COMMUNICATIONS, 2014, 50 (68) :9644-9646
[5]   Electrochemically stable cathode current collectors for rechargeable magnesium batteries [J].
Cheng, Yingwen ;
Liu, Tianbiao ;
Shao, Yuyan ;
Engelhard, Mark H. ;
Liu, Jun ;
Li, Guosheng .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (08) :2473-2477
[6]   Controlling the Intercalation Chemistry to Design High-Performance Dual-Salt Hybrid Rechargeable Batteries10.1021/ja508463z [J].
Cho, Jae-Hyun ;
Aykol, Muratahan ;
Kim, Soo ;
Ha, Jung-Hoon ;
Wolverton, C. ;
Chung, Kyung Yoon ;
Kim, Kwang-Bum ;
Cho, Byung-Won .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (46) :16116-16119
[7]   SURFACE OF A CARBON WITH SORBED OXYGEN ON PYROLYSIS [J].
COLTHARP, MT ;
HACKERMAN, N .
JOURNAL OF PHYSICAL CHEMISTRY, 1968, 72 (04) :1171-+
[8]   Novel, electrolyte solutions comprising fully inorganic salts with high anodic stability for rechargeable magnesium batteries [J].
Doe, Robert E. ;
Han, Ruoban ;
Hwang, Jaehee ;
Gmitter, Andrew J. ;
Shterenberg, Ivgeni ;
Yoo, Hyun Deog ;
Pour, Nir ;
Aurbach, Doron .
CHEMICAL COMMUNICATIONS, 2014, 50 (02) :243-245
[9]  
Gao T., 2014, ADV ENERGY MATER, V5
[10]   Improved electrolyte solutions for rechargeable magnesium batteries [J].
Gofer, Y ;
Chusid, O ;
Gizbar, H ;
Viestfrid, Y ;
Gottlieb, HE ;
Marks, V ;
Aurbach, D .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2006, 9 (05) :A257-A260