A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem

被引:2
|
作者
Li, Lin [1 ]
Lu, Zuliang [1 ,2 ,3 ]
Zhang, Wei [4 ]
Huang, Fei [1 ]
Yang, Yin [5 ,6 ]
机构
[1] Chongqing Three Gorges Univ, Key Lab Nonlinear Sci & Syst Struct, Chongqing, Peoples R China
[2] Chongqing Three Gorges Univ, Key Lab Intelligent Informat Proc & Control, Chongqing, Peoples R China
[3] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin, Peoples R China
[4] Chongqing Three Gorges Univ, Chongqing Municipal Inst Higher Educ, Key Lab Intelligent Informat Proc & Control, Chongqing, Peoples R China
[5] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan, Peoples R China
[6] Xiangtan Univ, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2018年
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Optimal control problem; Nonlinear parabolic equations; Variational discretization; Spectral method; A posteriori error estimates; FINITE-ELEMENT METHODS; ELLIPTIC-EQUATIONS; APPROXIMATION;
D O I
10.1186/s13660-018-1729-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the spectral approximation of optimal control problem governed by nonlinear parabolic equations. A spectral approximation scheme for the nonlinear parabolic optimal control problem is presented. We construct a fully discrete spectral approximation scheme by using the backward Euler scheme in time. Moreover, by using an orthogonal projection operator, we obtain L-2(H-1)-L-2 (L-2) a posteriori error estimates of the approximation solutions for both the state and the control. Finally, by introducing two auxiliary equations, we also obtain L-2(L-2)-L-2(L-2) a posteriori error estimates of the approximation solutions for both the state and the control.
引用
收藏
页数:23
相关论文
共 50 条
  • [41] A complete analysis for some A Posteriori error estimates with the finite element method of lines for a nonlinear parabolic equation
    Tran, T
    Duong, TB
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2002, 23 (7-8) : 891 - 909
  • [42] A priori error estimates of finite volume method for nonlinear optimal control problem
    Lu Z.
    Li L.
    Cao L.
    Hou C.
    Numerical Analysis and Applications, 2017, 10 (3) : 224 - 236
  • [43] SHARPLY LOCAL POINTWISE A POSTERIORI ERROR ESTIMATES FOR PARABOLIC PROBLEMS
    Demlow, Alan
    Makridakis, Charalambos
    MATHEMATICS OF COMPUTATION, 2010, 79 (271) : 1233 - 1262
  • [44] A posteriori error estimates for an optimal control problem of laser surface hardening of steel
    Nupur Gupta
    Neela Nataraj
    Advances in Computational Mathematics, 2013, 39 : 69 - 99
  • [45] A priori error estimates of finite volume element method for bilinear parabolic optimal control problem
    Lu, Zuliang
    Xu, Ruixiang
    Hou, Chunjuan
    Xing, Lu
    AIMS MATHEMATICS, 2023, 8 (08): : 19374 - 19390
  • [46] A posteriori error estimates of finite element method for parabolic problems
    Chen, YP
    ACTA MATHEMATICA SCIENTIA, 1999, 19 (04) : 449 - 456
  • [47] Sharp A Posteriori Error Estimates for Optimal Control Governed by Parabolic Integro-Differential Equations
    Shen, Wanfang
    Ge, Liang
    Yang, Danping
    Liu, Wenbin
    JOURNAL OF SCIENTIFIC COMPUTING, 2015, 65 (01) : 1 - 33
  • [48] A Posteriori Error Estimates for Parabolic Optimal Control Problems with Controls Acting on Lower Dimensional Manifolds
    Manohar, Ram
    Sinha, Rajen Kumar
    JOURNAL OF SCIENTIFIC COMPUTING, 2021, 89 (02)
  • [49] A Posteriori Error Estimates of Mixed Methods for Quadratic Optimal Control Problems Governed by Parabolic Equations
    Hou, Tianliang
    Chen, Yanping
    Huang, Yunqing
    NUMERICAL MATHEMATICS-THEORY METHODS AND APPLICATIONS, 2011, 4 (04) : 439 - 458
  • [50] A PRIORI AND POSTERIORI ERROR ESTIMATES OF LEGENDRE GALERKIN SPECTRAL METHODS FOR GENERAL ELLIPTIC OPTIMAL CONTROL PROBLEMS
    Lu, Zuliang
    Huang, Fei
    Lin, Li
    Cai, Fei
    Yang, Yin
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2020, 14 (04): : 989 - 1006