A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem

被引:2
|
作者
Li, Lin [1 ]
Lu, Zuliang [1 ,2 ,3 ]
Zhang, Wei [4 ]
Huang, Fei [1 ]
Yang, Yin [5 ,6 ]
机构
[1] Chongqing Three Gorges Univ, Key Lab Nonlinear Sci & Syst Struct, Chongqing, Peoples R China
[2] Chongqing Three Gorges Univ, Key Lab Intelligent Informat Proc & Control, Chongqing, Peoples R China
[3] Tianjin Univ Finance & Econ, Res Ctr Math & Econ, Tianjin, Peoples R China
[4] Chongqing Three Gorges Univ, Chongqing Municipal Inst Higher Educ, Key Lab Intelligent Informat Proc & Control, Chongqing, Peoples R China
[5] Xiangtan Univ, Hunan Key Lab Computat & Simulat Sci & Engn, Xiangtan, Peoples R China
[6] Xiangtan Univ, Minist Educ, Key Lab Intelligent Comp & Informat Proc, Xiangtan, Peoples R China
来源
JOURNAL OF INEQUALITIES AND APPLICATIONS | 2018年
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Optimal control problem; Nonlinear parabolic equations; Variational discretization; Spectral method; A posteriori error estimates; FINITE-ELEMENT METHODS; ELLIPTIC-EQUATIONS; APPROXIMATION;
D O I
10.1186/s13660-018-1729-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the spectral approximation of optimal control problem governed by nonlinear parabolic equations. A spectral approximation scheme for the nonlinear parabolic optimal control problem is presented. We construct a fully discrete spectral approximation scheme by using the backward Euler scheme in time. Moreover, by using an orthogonal projection operator, we obtain L-2(H-1)-L-2 (L-2) a posteriori error estimates of the approximation solutions for both the state and the control. Finally, by introducing two auxiliary equations, we also obtain L-2(L-2)-L-2(L-2) a posteriori error estimates of the approximation solutions for both the state and the control.
引用
收藏
页数:23
相关论文
共 50 条
  • [21] Error Estimates of hp Spectral Element Methods in Nonlinear Optimal Control Problem
    Xiuxiu Lin
    Yanping Chen
    Yunqing Huang
    Journal of Nonlinear Science, 2024, 34
  • [22] A Posteriori Error Estimates of Semidiscrete Mixed Finite Element Methods for Parabolic Optimal Control Problems
    Chen, Yanping
    Lin, Zhuoqing
    EAST ASIAN JOURNAL ON APPLIED MATHEMATICS, 2015, 5 (01) : 85 - 108
  • [23] ELLIPTIC RECONSTRUCTION AND A POSTERIORI ERROR ESTIMATES FOR FULLY DISCRETE SEMILINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS
    Manohar, Ram
    Sinha, Rajen Kumar
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2022, 40 (02): : 147 - 176
  • [24] A posteriori error estimates of spectral method for the fractional optimal control problems with non-homogeneous initial conditions
    Ye, Xingyang
    Xu, Chuanju
    AIMS MATHEMATICS, 2021, 6 (11): : 12028 - 12050
  • [25] New a posteriori error estimates for hp version of finite element methods of nonlinear parabolic optimal control problems
    Lu, Zuliang
    Liu, Hongyan
    Hou, Chunjuan
    Cao, Longzhou
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2016, : 1 - 17
  • [26] Maximum-norm a posteriori error estimates for an optimal control problem
    Otarola, Enrique
    Rankin, Richard
    Salgado, Abner J.
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2019, 73 (03) : 997 - 1017
  • [27] A Posteriori Error Estimates for an Optimal Control Problem with a Bilinear State Equation
    Francisco Fuica
    Enrique Otárola
    Journal of Optimization Theory and Applications, 2022, 194 : 543 - 569
  • [28] A Posteriori Error Estimates for an Optimal Control Problem with a Bilinear State Equation
    Fuica, Francisco
    Otarola, Enrique
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 194 (02) : 543 - 569
  • [29] A posteriori error estimates for semilinear optimal control problems
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (05) : 2293 - 2322
  • [30] Error estimates of finite volume method for Stokes optimal control problem
    Lan, Lin
    Chen, Ri-hui
    Wang, Xiao-dong
    Ma, Chen-xia
    Fu, Hao-nan
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2021, 2021 (01)