A Physical Derivation of the Kerr-Newman Black Hole Solution

被引:1
作者
Meinel, Reinhard [1 ]
机构
[1] Univ Jena, Theoret Phys Inst, Max Wien Pl 1, D-07743 Jena, Germany
来源
1ST KARL SCHWARZSCHILD MEETING ON GRAVITATIONAL PHYSICS | 2016年 / 170卷
关键词
GRAVITATIONAL-FIELD;
D O I
10.1007/978-3-319-20046-0_6
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
According to the no-hair theorem, the Kerr-Newman black hole solution represents the most general asymptotically flat, stationary (electro-) vacuum black hole solution in general relativity. The procedure described here shows howthis solution can indeed be constructed as the unique solution to the corresponding boundary value problem of the axially symmetric Einstein-Maxwell equations in a straightforward manner.
引用
收藏
页码:53 / 61
页数:9
相关论文
共 15 条
[1]  
Belinski V., 2001, Gravitational Solitons
[2]  
Carter B., 1973, Black Hole Equilibrium States, Black Holes, P57
[3]   Stationary Black Holes: Uniqueness and Beyond [J].
Chrusciel, Piotr T. ;
Costa, Joao Lopes ;
Heusler, Markus .
LIVING REVIEWS IN RELATIVITY, 2012, 15
[4]   NEW FORMULATION OF AXIALLY SYMMETRIC GRAVITATIONAL FIELD PROBLEM .2. [J].
ERNST, FJ .
PHYSICAL REVIEW, 1968, 168 (05) :1415-+
[5]   A HOMOGENEOUS HILBERT PROBLEM FOR THE KINNERSLEY-CHITRE TRANSFORMATIONS OF ELECTROVAC SPACETIMES [J].
HAUSER, I ;
ERNST, FJ .
JOURNAL OF MATHEMATICAL PHYSICS, 1980, 21 (06) :1418-1422
[6]  
Hawking SW., 1973, LARGE SCALE STRUCTUR, DOI DOI 10.1017/CBO9780511524646
[7]  
Meinel R., 2012, ARXIV12080294GRQC
[8]  
Meinel R., 2008, Relativistic Figures of Equilibrium
[10]   EINSTEIN-MAXWELL SOLITONS [J].
NEUGEBAUER, G ;
KRAMER, D .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1983, 16 (09) :1927-1936