Extended linear regression for undersampled face recognition

被引:9
作者
Chen, Si-Bao [1 ]
Ding, Chris H. Q. [2 ]
Luo, Bin [1 ]
机构
[1] Anhui Univ, Sch Comp Sci & Technol, Minist Educ, Key Lab Intelligent Comp & Signal Proc, Hefei 230039, Anhui, Peoples R China
[2] Univ Texas Arlington, Dept Comp Sci & Engn, Arlington, TX 76019 USA
基金
中国国家自然科学基金;
关键词
Linear regression; Intraclass variant dictionary; Singular value decomposition; Face recognition; Low rank; Undersampled classification; Supervised learning; Pattern recognition; DIMENSIONALITY REDUCTION; ILLUMINATION; DICTIONARY; EIGENFACES; POSE;
D O I
10.1016/j.jvcir.2014.07.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Linear Regression Classification (LRC) is a newly-appeared pattern recognition method, which formulates the recognition problem in terms of class-specific linear regression with sufficient training samples per class. In this paper, we extend LRC via intraclass variant dictionary and SVD to undersampled face recognition where there are very few, or even only one, training sample per class. Intraclass variant dictionary is adopted in undersampled situation to represent the possible variation between the training and testing samples. Three types of methods, quasi-inverse, ridge regularization and Singular Value Decomposition (SVD), are designed to solve low-rank problem of data matrix. Then the whole algorithm, named Extended LRC (ELRC), is presented for face recognition via intraclass variant dictionary and SVD. The experimental results on three well-known face databases show that the proposed ELRC has better generalization ability and is more robust to classification than many state-of-the-art methods in undersampled situation. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1800 / 1809
页数:10
相关论文
共 28 条
[1]   K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation [J].
Aharon, Michal ;
Elad, Michael ;
Bruckstein, Alfred .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (11) :4311-4322
[2]  
[Anonymous], 2002, Principal components analysis
[3]  
[Anonymous], 2000, Pattern Classification
[4]   Lambertian reflectance and linear subspaces [J].
Basri, R ;
Jacobs, DW .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2003, 25 (02) :218-233
[5]   Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection [J].
Belhumeur, PN ;
Hespanha, JP ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1997, 19 (07) :711-720
[6]   Laplacian eigenmaps for dimensionality reduction and data representation [J].
Belkin, M ;
Niyogi, P .
NEURAL COMPUTATION, 2003, 15 (06) :1373-1396
[7]   Locally linear regression for pose-invariant face recognition [J].
Chai, Xiujuan ;
Shan, Shiguang ;
Chen, Xilin ;
Gao, Wen .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2007, 16 (07) :1716-1725
[8]   A Least-Squares Framework for Component Analysis [J].
De la Torre, Fernando .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (06) :1041-1055
[9]   Extended SRC: Undersampled Face Recognition via Intraclass Variant Dictionary [J].
Deng, Weihong ;
Hu, Jiani ;
Guo, Jun .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (09) :1864-1870
[10]   From few to many: Illumination cone models for face recognition under variable lighting and pose [J].
Georghiades, AS ;
Belhumeur, PN ;
Kriegman, DJ .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2001, 23 (06) :643-660