Bounds of Gauss sums in finite fields

被引:7
作者
Shparlinski, IE [1 ]
机构
[1] Macquarie Univ, Dept Comp, Sydney, NSW 2109, Australia
关键词
Gauss sums; finite fields; linear recurrence sequences;
D O I
10.1090/S0002-9939-04-07133-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider Gauss sums of the form [GRAPHICS] with a nontrivial additive character chi not equal chi(0) of a finite field F(p)m of pm elements of characteristic p. The classical bound \G(n)(a)\ less than or equal to (n - 1) p(m/2) becomes trivial for n greater than or equal to p(m/2) + 1. We show that, combining some recent bounds of Heath-Brown and Konyagin with several bounds due to Deligne, Katz, and Li, one can obtain the bound on \G(n)(a)\ which is nontrivial for the values of n of order up to p(m/2+1/6). We also show that for almost all primes one can obtain a bound which is nontrivial for the values of n of order up to p(m/2+1/2).
引用
收藏
页码:2817 / 2824
页数:8
相关论文
共 13 条
[1]  
[Anonymous], 1988, ANN MATH STUD
[2]   On the statistical properties of Diffie-Hellman distributions [J].
Canetti, R ;
Friedlander, J ;
Konyagin, S ;
Larsen, M ;
Lieman, D ;
Shparlinski, I .
ISRAEL JOURNAL OF MATHEMATICS, 2000, 120 (1) :23-46
[3]  
Deligne P., 1977, Lecture Notes in Math., V569
[4]   On the correlation of binary M-sequences [J].
Friedlander, J ;
Larsen, M ;
Lieman, D ;
Shparlinski, I .
DESIGNS CODES AND CRYPTOGRAPHY, 1999, 16 (03) :249-256
[5]   New bounds for Gauss sums derived from kth powers, and for Heilbronn's exponential sum [J].
Heath-Brown, DR ;
Konyagin, S .
QUARTERLY JOURNAL OF MATHEMATICS, 2000, 51 :221-235
[6]  
Konyagin S. V., 1999, CHARACTER SUMS EXPON
[7]  
KONYAGIN SV, 2002, BOUNDS EXPONENTIAL S, P1
[8]  
Li W.-C. W., 1996, NUMBER THEORY APPL
[9]   CHARACTER SUMS AND ABELIAN RAMANUJAN GRAPHS [J].
LI, WCW ;
FENG, KQ .
JOURNAL OF NUMBER THEORY, 1992, 41 (02) :199-217
[10]  
Lidl R., 1997, Finite Fields