Process interactions between low-energy ion implantation and rapid-thermal annealing for optimized ultrashallow junction formation

被引:14
|
作者
Murrell, AJ [1 ]
Collart, EJH
Foad, MA
Jennings, D
机构
[1] Appl Mat, Implant Div, Horsham RH13 5PY, W Sussex, England
[2] Appl Mat, RTP Div, Santa Clara, CA USA
来源
关键词
D O I
10.1116/1.591212
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The shallow doping requirements for the next 2-3 device generations can be satisfied by a combination of low-energy ion implantation and rapid-thermal anneal. However, the differing requirements of distinct types of devices preclude the definition of a single optimized process. To tailor the junction properties according to device type and geometry, requires an understanding of the effects of process parameters in both implant and anneal steps. In describing the interactions and mechanisms behind this optimization, a number of tradeoffs are highlighted: (i) The choice of implant energy and dose may be traded off against the anneal time-temperature profile. (ii) The benefits of preamorphization to reduce ion channeling are offset by the detrimental increase in transient-enhanced diffusion and dopant segregation, (iii) The use of oxygen in the anneal ambient is discussed in terms of its effects on diffusion versus dopant loss at the surface. (C) 2000 American Vacuum Society. [S0734-211X(00)00401-2].
引用
收藏
页码:462 / 467
页数:6
相关论文
共 50 条
  • [21] The influence of "off-axis" from {100} oriented Si wafers on junction depth and sheet resistance for low-energy implantation and rapid thermal annealing
    Lerch, W
    Downey, DF
    Arevalo, EA
    Ostermeir, R
    2000 INTERNATIONAL CONFERENCE ON ION IMPLANTATION TECHNOLOGY, PROCEEDINGS, 2000, : 186 - 190
  • [22] Low-energy ion implantation for shallow junction crystalline silicon solar cell
    Yang, Wei-Lin
    Lin, Tai-Ying
    Lien, Shu-Sheng
    Wang, Likarn
    SOLAR ENERGY, 2016, 130 : 25 - 32
  • [23] Implantation damage effect on boron annealing behavior using low-energy polyatomic ion implantation
    Jin, JY
    Liu, JR
    van der Heide, PAW
    Chu, WK
    APPLIED PHYSICS LETTERS, 2000, 76 (05) : 574 - 576
  • [24] THE USE OF RAPID THERMAL ANNEALING IN A SYSTEMATIC ION-IMPLANTATION MONITORING PROCESS
    YARLING, CB
    SOLID STATE TECHNOLOGY, 1985, 28 (05) : 252 - 254
  • [25] Study on the rapid thermal annealing process of low-energy arsenic and phosphorous ion-implanted silicon by reflective second harmonic generation
    Lo, K. Y.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2005, 38 (21) : 3926 - 3933
  • [26] Influence of thermal annealing on charge storage behaviour of Ge nanoclusters synthesized with low-energy Ge ion implantation
    Yang, M.
    Chen, T. P.
    Wong, J. I.
    Liu, Y.
    Ding, L.
    Liu, K. Y.
    Zhang, S.
    Zhang, W. L.
    Gui, D.
    Ng, C. Y.
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2009, 42 (03)
  • [27] The effect of preamorphization energy on ultrashallow junction formation following ultrahigh-temperature annealing of ion-implanted silicon
    Gable, K.A. (kevin.a.gable@intel.com), 1600, American Institute of Physics Inc. (97):
  • [28] The effect of preamorphization energy on ultrashallow junction formation following ultrahigh-temperature annealing of ion-implanted silicon
    Gable, KA
    Robertson, LS
    Jain, A
    Jones, KS
    JOURNAL OF APPLIED PHYSICS, 2005, 97 (04)
  • [29] Molecular dynamics (MD) modeling for low-energy ion implantation process
    Kwon, O
    Kim, K
    Seo, J
    Won, T
    Dunham, S
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2004, 45 (05) : 1327 - 1331
  • [30] Study of damage formation by low-energy boron cluster ion implantation
    Aoki, T
    Matsuo, J
    Takaoka, G
    IIT2002: ION IMPLANTATION TECHNOLOGY, PROCEEDINGS, 2003, : 560 - 563