Broad-Enrich: functional interpretation of large sets of broad genomic regions

被引:9
作者
Cavalcante, Raymond G. [1 ]
Lee, Chee [1 ]
Welch, Ryan P. [1 ,2 ]
Patil, Snehal [3 ]
Weymouth, Terry [3 ]
Scott, Laura J. [2 ]
Sartor, Maureen A. [1 ,2 ,3 ]
机构
[1] Univ Michigan, Dept Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
[2] Univ Michigan, Dept Biostat, Ann Arbor, MI 48109 USA
[3] Univ Michigan, Ctr Computat Med & Bioinformat, Ann Arbor, MI 48109 USA
基金
美国国家卫生研究院;
关键词
MARKS; DIFFERENTIATION; IDENTIFICATION; METHYLATION; EVOLUTION; PATHWAYS; LRPATH; TISSUE; GENES;
D O I
10.1093/bioinformatics/btu444
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Motivation: Functional enrichment testing facilitates the interpretation of Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) data in terms of pathways and other biological contexts. Previous methods developed and used to test for key gene sets affected in ChIP-seq experiments treat peaks as points, and are based on the number of peaks associated with a gene or a binary score for each gene. These approaches work well for transcription factors, but histone modifications often occur over broad domains, and across multiple genes. Results: To incorporate the unique properties of broad domains into functional enrichment testing, we developed Broad-Enrich, a method that uses the proportion of each gene's locus covered by a peak. We show that our method has a well-calibrated false-positive rate, performing well with ChIP-seq data having broad domains compared with alternative approaches. We illustrate Broad-Enrich with 55 ENCODE ChIP-seq datasets using different methods to define gene loci. Broad-Enrich can also be applied to other datasets consisting of broad genomic domains such as copy number variations.
引用
收藏
页码:I393 / I400
页数:8
相关论文
共 39 条
[1]  
[Anonymous], 2001, BIOTECH SOFTW INTERN, DOI DOI 10.1089/152791601750294344
[2]  
[Anonymous], 2004, R PACKAGE VERSION
[3]  
[Anonymous], 2006, Generalized additive models: an introduction with R. Chapman and Hall/CRC
[4]  
[Anonymous], HIST MOD CHIP SEQ EN
[5]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[6]   Practical Guidelines for the Comprehensive Analysis of ChIP-seq Data [J].
Bailey, Timothy ;
Krajewski, Pawel ;
Ladunga, Istvan ;
Lefebvre, Celine ;
Li, Qunhua ;
Liu, Tao ;
Madrigal, Pedro ;
Taslim, Cenny ;
Zhang, Jie .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (11)
[7]   High-resolution profiling of histone methylations in the human genome [J].
Barski, Artern ;
Cuddapah, Suresh ;
Cui, Kairong ;
Roh, Tae-Young ;
Schones, Dustin E. ;
Wang, Zhibin ;
Wei, Gang ;
Chepelev, Iouri ;
Zhao, Keji .
CELL, 2007, 129 (04) :823-837
[8]   Fast signals and slow marks: the dynamics of histone modifications [J].
Barth, Teresa K. ;
Imhof, Axel .
TRENDS IN BIOCHEMICAL SCIENCES, 2010, 35 (11) :618-626
[9]  
Bateman A, 2004, NUCLEIC ACIDS RES, V32, pD138, DOI [10.1093/nar/gkp985, 10.1093/nar/gkh121, 10.1093/nar/gkr1065]
[10]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300