Runge-Kutta methods and inverse Hermite interpolation

被引:3
|
作者
Trimbitas, Radu T. [1 ]
Trimbitas, Maria Gabriela [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
关键词
D O I
10.1109/SYNASC.2007.28
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For an initial value problem relative to the first order ordinary differential equation and a given value, one desires to compute an abscissa, such that the value of the solution at that point equates the desired value. Our solution is a combination of dense output for Runge-Kutta methods and inverse Hermite interpolation. We are interested to save function evaluations in inverse interpolation. A MATLAB implementation is presented and some numerical example are given. The MATLAB approach allow us to consider a vector of desired values, and to divide the range of solution values into equal subintervals and to find the corresponding abscissas.
引用
收藏
页码:118 / 123
页数:6
相关论文
共 50 条
  • [21] Runge-Kutta methods in elastoplasticity
    Büttner, J
    Simeon, B
    APPLIED NUMERICAL MATHEMATICS, 2002, 41 (04) : 443 - 458
  • [22] PRACTICAL ASPECTS OF INTERPOLATION IN RUNGE-KUTTA CODES
    GLADWELL, I
    SHAMPINE, LF
    BACA, LS
    BRANKIN, RW
    SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1987, 8 (03): : 322 - 341
  • [23] Natural Volterra Runge-Kutta methods
    Dajana Conte
    Raffaele D’Ambrosio
    Giuseppe Izzo
    Zdzislaw Jackiewicz
    Numerical Algorithms, 2014, 65 : 421 - 445
  • [24] FAMILIES OF IMBEDDED RUNGE-KUTTA METHODS
    VERNER, JH
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 1979, 16 (05) : 857 - 875
  • [25] Efficient symplectic Runge-Kutta methods
    Chan, RPK
    Liu, HY
    Sun, G
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 172 (02) : 908 - 924
  • [26] Runge-Kutta methods of special form
    Ixaru, L. Gr.
    INTERNATIONAL SUMMER SCHOOL FOR ADVANCED STUDIES DYNAMICS OF OPEN NUCLEAR SYSTEMS (PREDEAL12), 2013, 413
  • [27] Equilibrium attractivity of Runge-Kutta methods
    Schmitt, BA
    Weiner, R
    IMA JOURNAL OF NUMERICAL ANALYSIS, 2001, 21 (01) : 327 - 348
  • [28] An introduction to ''Almost Runge-Kutta'' methods
    Butcher, JC
    APPLIED NUMERICAL MATHEMATICS, 1997, 24 (2-3) : 331 - 342
  • [29] Exponentially fitted Runge-Kutta methods
    Vanden Berghe, G
    De Meyer, H
    Van Daele, M
    Van Hecke, T
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 125 (1-2) : 107 - 115
  • [30] Explicit adaptive Runge-Kutta methods
    L. M. Skvortsov
    Mathematical Models and Computer Simulations, 2012, 4 (1) : 82 - 91