Runge-Kutta methods and inverse Hermite interpolation

被引:3
|
作者
Trimbitas, Radu T. [1 ]
Trimbitas, Maria Gabriela [1 ]
机构
[1] Univ Babes Bolyai, Fac Math & Comp Sci, Cluj Napoca 400084, Romania
关键词
D O I
10.1109/SYNASC.2007.28
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
For an initial value problem relative to the first order ordinary differential equation and a given value, one desires to compute an abscissa, such that the value of the solution at that point equates the desired value. Our solution is a combination of dense output for Runge-Kutta methods and inverse Hermite interpolation. We are interested to save function evaluations in inverse interpolation. A MATLAB implementation is presented and some numerical example are given. The MATLAB approach allow us to consider a vector of desired values, and to divide the range of solution values into equal subintervals and to find the corresponding abscissas.
引用
收藏
页码:118 / 123
页数:6
相关论文
共 50 条