Orthonormal polynomials for hexagonal pupils

被引:35
作者
Mahajan, Virendra N.
Dai, Guang-ming
机构
[1] Aerosp Corp, El Segundo, CA 90245 USA
[2] AMO Laser Vis Correct Grp, Santa Clara, CA 95051 USA
关键词
D O I
10.1364/OL.31.002462
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The problem of determining the orthonormal polynomials for hexagonal pupils by the Gram-Schmidt orthogonalization of Zernike circle polynomials is revisited, and closed-form expressions for the hexagonal polynomials are given. We show how the orthonormal coefficients are related to the corresponding Zernike coefficients for a hexagonal pupil and emphasize that it is the former that should be used for any quantitative wavefront analysis for such a pupil. (c) 2006 Optical Society of America.
引用
收藏
页码:2462 / 2464
页数:3
相关论文
共 7 条
[1]  
Born M., 1999, PRINCIPLES OPTICS
[2]   ORTHOGONAL POLYNOMIALS ON THE HEXAGON [J].
DUNKL, CF .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1987, 47 (02) :343-351
[3]  
Korn G. A, 1968, MATH HDB SCI ENG
[4]   Zernike polynomials and aberration balancing [J].
Mahajan, VN .
CURRENT DEVELOPMENTS IN LENS DESIGN AND OPTICAL ENGINEERING IV, 2003, 5173 :1-17
[5]  
MAHAJAN VN, 2004, WAVE DIFFRACTION OPT
[6]   ZERNIKE POLYNOMIALS AND ATMOSPHERIC-TURBULENCE [J].
NOLL, RJ .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA, 1976, 66 (03) :207-211
[7]   Gram-Schmidt orthogonalization of the Zernike polynomials on apertures of arbitrary shape [J].
Upton, R ;
Ellerbroek, B .
OPTICS LETTERS, 2004, 29 (24) :2840-2842