FEKETE-SZEGO PROBLEM FOR CERTAIN SUBCLASSES OF UNIVALENT FUNCTIONS

被引:3
作者
Vasudevarao, Allu [1 ]
机构
[1] Indian Inst Technol, Dept Math, Kharagpur 721302, W Bengal, India
关键词
univalent functions; starlike; convex; close-to-convex and Fekete-Szego problem; INEQUALITIES;
D O I
10.4134/BKMS.2015.52.6.1937
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For 1 <= alpha < 2, let F(alpha) denote the class of locally univalent normalized analytic functions f(z) = z + Sigma(infinity)(n=2) a(n)z(n) in the unit disk D = {z is an element of C : vertical bar z vertical bar < 1} satisfying the condition Re(1+zf ''(z)/f'(z)) > alpha/2 - 1. In the present paper, we shall obtain the sharp upper bound for Fekete-Szego functional vertical bar a(3) - lambda a(2)(2)vertical bar for the complex parameter lambda.
引用
收藏
页码:1937 / 1943
页数:7
相关论文
共 23 条
[1]   THE FEKETE-SZEGO PROBLEM FOR STRONGLY CLOSE-TO-CONVEX FUNCTIONS [J].
ABDELGAWAD, HR ;
THOMAS, DK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 114 (02) :345-349
[2]   Extremal problems on the class of convex functions of order-1/2 [J].
Abu Muhanna, Yusuf ;
Li, Liulan ;
Ponnusamy, Saminathan .
ARCHIV DER MATHEMATIK, 2014, 103 (06) :461-471
[3]   On the Fekete-Szego problem for concave univalent functions [J].
Bhowmik, B. ;
Ponnusamy, S. ;
Wirths, K-J .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 373 (02) :432-438
[4]   A general approach to the Fekete-Szego problem [J].
Choi, Jae Ho ;
Kim, Yong Chan ;
Sugawa, Toshiyuki .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2007, 59 (03) :707-727
[5]  
Duren P. L., 1983, Grundlehren der Mathematischen Wissenschaften, V259
[6]  
Fekete M., 1933, J LOND MATH SOC, V8, P85, DOI DOI 10.1112/JLMS/S1-8.2.85
[7]  
Jenkins J. A., 1960, CERTAIN COEFFICIENTS
[8]  
JENKINS JA, 1954, T AM MATH SOC, V77, P262
[9]   A COEFFICIENT INEQUALITY FOR CERTAIN CLASSES OF ANALYTIC FUNCTIONS [J].
KEOGH, FR ;
MERKES, EP .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (01) :8-&
[10]   Norm estimates of the pre-Schwarzian derivatives for certain classes of univalent functions [J].
Kim, YC ;
Sugawa, T .
PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2006, 49 :131-143