Microstructural Analysis of an LSCF Cathode Using In-Situ Tomography and Simulation

被引:31
作者
Cooper, S. J. [1 ]
Kishimoto, M. [2 ]
Tariq, F. [2 ]
Bradley, R. S. [5 ]
Marquis, A. J. [3 ]
Brandon, N. P. [2 ]
Kilner, J. [1 ]
Shearing, P. R. [4 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Mat, London SW7 2AZ, England
[2] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London SW7 2AZ, England
[3] Univ London Imperial Coll Sci Technol & Med, Dept Engn Mech, London SW7 2AZ, England
[4] Univ London Imperial Coll Sci Technol & Med, Dept Chem Engn, London SW7 2AZ, England
[5] Univ Manchester, Sch Mat, Henry Moseley Xray Imaging fac, Manchester M13 9PL, Lancs, England
来源
SOLID OXIDE FUEL CELLS 13 (SOFC-XIII) | 2013年 / 57卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
DIFFUSION; TORTUOSITY; ELECTRODE; MEDIA; ANODE;
D O I
10.1149/05701.2671ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Electrode tortuosity factor is a key input parameter in many fuel cell simulations. Three-dimensional microstructural data obtained from in-situ synchrotron X-ray nano-computed tomography is used as the basis for comparing five approaches to quantify the tortuosity factor. Three of these techniques are based on diffusivity simulations and showed strong correlation, but had consistently different absolute values. A random walk method showed a good degree of correlation to the diffusive approaches, but had the largest values overall. Lastly, a calculation that used a mean pore centroid approach showed little correlation to any of the other three methods, but compared well with the conventional Bruggeman correlation. Due to the diffusive nature of the ionic transport in electrodes, the authors would recommend calculating tortuosity factors using a diffusive approach based on the voxels rather than a remeshed volume.
引用
收藏
页码:2671 / 2678
页数:8
相关论文
共 14 条
[1]   Electrode kinetics of porous mixed-conducting oxygen electrodes [J].
Adler, SB ;
Lane, JA ;
Steele, BCH .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1996, 143 (11) :3554-3564
[2]   EFFECTIVE TRANSPORT-COEFFICIENTS IN HETEROGENEOUS MEDIA [J].
AKANNI, KA ;
EVANS, JW .
CHEMICAL ENGINEERING SCIENCE, 1987, 42 (08) :1945-1954
[4]  
Cooper S., 2013, J POWER SOURCES
[6]   Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique [J].
Iwai, Hiroshi ;
Shikazono, Naoki ;
Matsui, Toshiaki ;
Teshima, Hisanori ;
Kishimoto, Masashi ;
Kishida, Ryo ;
Hayashi, Daisuke ;
Matsuzaki, Katsuhisa ;
Kanno, Daisuke ;
Saito, Motohiro ;
Muroyama, Hiroki ;
Eguchi, Koichi ;
Kasagi, Nobuhide ;
Yoshida, Hideo .
JOURNAL OF POWER SOURCES, 2010, 195 (04) :955-961
[7]   Quantitative Evaluation of Transport Properties of SOFC Porous Anode by Random Walk Process [J].
Kishimoto, Masashi ;
Iwai, Hiroshi ;
Saito, Motohiro ;
Yoshida, Hideo .
SOLID OXIDE FUEL CELLS 11 (SOFC-XI), 2009, 25 (02) :1887-1896
[8]   DIFFUSION IN A PORE OF VARYING CROSS SECTION [J].
PETERSEN, EE .
AICHE JOURNAL, 1958, 4 (03) :343-345
[9]   Multi Length Scale Microstructural Investigations of a Commercially Available Li-Ion Battery Electrode [J].
Shearing, P. R. ;
Brandon, N. P. ;
Gelb, J. ;
Bradley, R. ;
Withers, P. J. ;
Marquis, A. J. ;
Cooper, S. ;
Harris, S. J. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (07) :A1023-A1027
[10]   Using Synchrotron X-Ray Nano-CT to Characterize SOFC Electrode Microstructures in Three-Dimensions at Operating Temperature [J].
Shearing, P. R. ;
Bradley, R. S. ;
Gelb, J. ;
Lee, S. N. ;
Atkinson, A. ;
Withers, P. J. ;
Brandon, N. P. .
ELECTROCHEMICAL AND SOLID STATE LETTERS, 2011, 14 (10) :B117-B120