On-chip plasmonic waveguide optical waveplate

被引:32
作者
Gao, Linfei [1 ,2 ]
Huo, Yijie [2 ]
Zang, Kai [2 ]
Paik, Seonghyun [2 ]
Chen, Yusi [2 ]
Harris, James S. [2 ]
Zhou, Zhiping [1 ]
机构
[1] Peking Univ, State Key Lab Adv Opt Commun Syst & Networks, Beijing 100871, Peoples R China
[2] Stanford Univ, Dept Elect Engn, Stanford, CA 94305 USA
基金
中国国家自然科学基金;
关键词
QUANTUM TELEPORTATION; POLARIZATION ROTATOR; SILICON; COMPACT; CONFINEMENT; DESIGN;
D O I
10.1038/srep15794
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Polarization manipulation is essential in almost every photonic system ranging from telecommunications to bio-sensing to quantum information. This is traditionally achieved using bulk waveplates. With the developing trend of photonic systems towards integration and miniaturization, the need for an on-chip waveguide type waveplate becomes extremely urgent. However, this is very challenging using conventional dielectric waveguides, which usually require complex 3D geometries to alter the waveguide symmetry and are also difficult to create an arbitrary optical axis. Recently, a waveguide waveplate was realized using femtosecond laser writing, but the device length is in millimeter range. Here, for the first time we propose and experimentally demonstrate an ultracompact, on-chip waveplate using an asymmetric hybrid plasmonic waveguide to create an arbitrary optical axis. The device is only in several microns length and produced in a flexible integratable IC compatible format, thus opening up the potential for integration into a broad range of systems.
引用
收藏
页数:6
相关论文
共 32 条
[1]   Surface plasmon subwavelength optics [J].
Barnes, WL ;
Dereux, A ;
Ebbesen, TW .
NATURE, 2003, 424 (6950) :824-830
[2]   Polarization-transparent microphotonic devices in the strong confinement limit [J].
Barwicz, Tymon ;
Watts, Michael R. ;
Popovic, Milos A. ;
Rakich, Peter T. ;
Socci, Luciano ;
Kartner, Franz X. ;
Ippen, Erich P. ;
Smith, Henry I. .
NATURE PHOTONICS, 2007, 1 (01) :57-60
[3]   Surface plasmon amplification by stimulated emission of radiation: Quantum generation of coherent surface plasmons in nanosystems [J].
Bergman, DJ ;
Stockman, MI .
PHYSICAL REVIEW LETTERS, 2003, 90 (02) :4
[4]  
Berove N., 2000, Circular Dichroism, Principles and Applications, P28
[5]   Experimental demonstration of an integrated hybrid plasmonic polarization rotator [J].
Caspers, J. Niklas ;
Aitchison, J. Stewart ;
Mojahedi, Mo .
OPTICS LETTERS, 2013, 38 (20) :4054-4057
[6]   Compact hybrid plasmonic polarization rotator [J].
Caspers, J. Niklas ;
Alam, M. Z. ;
Mojahedi, Mo .
OPTICS LETTERS, 2012, 37 (22) :4615-4617
[7]   Compact polarization rotator on silicon for polarization-diversified circuits [J].
Chen, Long ;
Doerr, Christopher R. ;
Chen, Young-Kai .
OPTICS LETTERS, 2011, 36 (04) :469-471
[8]   Rotated waveplates in integrated waveguide optics [J].
Corrielli, Giacomo ;
Crespi, Andrea ;
Geremia, Riccardo ;
Ramponi, Roberta ;
Sansoni, Linda ;
Santinelli, Andrea ;
Mataloni, Paolo ;
Sciarrino, Fabio ;
Osellame, Roberto .
NATURE COMMUNICATIONS, 2014, 5
[9]   Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction [J].
Dai, Daoxin ;
Bauters, Jared ;
Bowers, John E. .
LIGHT-SCIENCE & APPLICATIONS, 2012, 1 :e1-e1
[10]   A silicon-based hybrid plasmonic waveguide with a metal cap for a nano-scale light confinement [J].
Dai, Daoxin ;
He, Sailing .
OPTICS EXPRESS, 2009, 17 (19) :16646-16653