Projected equation methods for approximate solution of large linear systems

被引:39
作者
Bertsekas, Dimitri P. [1 ]
Yu, Huizhen [2 ]
机构
[1] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
[2] Univ Helsinki, Helsinki Inst Informat Technol, FIN-00014 Helsinki, Finland
基金
美国国家科学基金会;
关键词
Linear equations; Projected equations; Dynamic programming; Temporal differences; Simulation; Value iteration; Jacobi method; ALGORITHMS;
D O I
10.1016/j.cam.2008.07.037
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We. consider linear systems of equations and solution approximations derived by projection on a low-dimensional subspace. We propose stochastic iterative algorithms, based on simulation, which converge to the approximate solution and are suitable for very large-dimensional problems. The algorithms are extensions of recent approximate dynamic programming methods, known as temporal difference methods, which solve a projected form of Bellman's equation by using simulation-based approximations to this equation, or by using a projected value iteration method. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:27 / 50
页数:24
相关论文
共 30 条
[1]  
[Anonymous], 2007, DYNAMIC PROGRAMMING
[2]  
[Anonymous], 1996, LIDSP2349 MIT
[3]  
[Anonymous], 2003, ITERATIVE METHODS SP, DOI DOI 10.1137/1.9780898718003
[4]  
BARTO AG, 1994, ADV NEURAL INFORMATI, V6, P687
[5]  
BASU A, 2006, 200625 IND I SCI DEP
[6]  
BERTSEKAS D, 2004, LEARNING APPROXIMATE
[7]  
Bertsekas Dimitri, 1996, Neuro dynamic programming
[8]  
BERTSEKAS DP, 2007, LIDS2754 MIT
[9]  
Boyan J., 2002, MACH LEARN, V49, P1
[10]  
Bradtke SJ, 1996, MACH LEARN, V22, P33, DOI 10.1007/BF00114723