First-Order Shape Derivative of the Energy for Elastic Plates with Rigid Inclusions and Interfacial Cracks

被引:22
作者
Rudoy, Evgeny [1 ]
Shcherbakov, Viktor [1 ,2 ]
机构
[1] Lavrentyev Inst Hydrodynam, Lavrentyev Ave 15, Novosibirsk 630090, Russia
[2] Univ Kassel, Inst Math, Heinrich Plett Str 40, D-34132 Kassel, Germany
基金
俄罗斯基础研究基金会;
关键词
Kirchhoff– Love elastic plate; Rigid inclusion; Interfacial crack; Variational model; Shape derivative of energy; Griffith formula; QUASI-STATIC DELAMINATION; SENSITIVITY-ANALYSIS; EVOLUTION; BOUNDARY; DIFFERENTIABILITY; INTEGRALS; MODEL; SIZE;
D O I
10.1007/s00245-020-09729-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Within the framework of Kirchhoff-Love plate theory, we analyze a variational model for elastic plates with rigid inclusions and interfacial cracks. The main feature of the model is a fully coupled nonpenetration condition that involves both the normal component of the longitudinal displacements and the normal derivative of the transverse deflection of the crack faces. Without making any artificial assumptions on the crack geometry and shape variation, we prove that the first-order shape derivative of the potential deformation energy is well defined and provide an explicit representation for it. The result is applied to derive the Griffith formula for the energy release rate associated with crack extension.
引用
收藏
页码:2775 / 2802
页数:28
相关论文
共 49 条
  • [1] ENERGY RELEASE RATE AND QUASI-STATIC EVOLUTION VIA VANISHING VISCOSITY IN A FRACTURE MODEL DEPENDING ON THE CRACK OPENING
    Almi, Stefano
    [J]. ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2017, 23 (03) : 791 - 826
  • [2] The infinitesimal rigid displacement lemma in Lipschitz co-ordinates and application to shells with minimal regularity
    Anicic, S
    Le Dret, H
    Raoult, A
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (11) : 1283 - 1299
  • [3] Numerical size estimates of inclusions in Kirchhoff-Love elastic plates
    Bilotta, Antonio
    Morassi, Antonino
    Rosset, Edi
    Turco, Emilio
    Vessella, Sergio
    [J]. INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2019, 168 : 58 - 72
  • [4] Budiansky B., 1973, Transactions of the ASME. Series E, Journal of Applied Mechanics, V40, P201, DOI 10.1115/1.3422926
  • [5] Chen YH, 2013, ADV CONSERVATION LAW
  • [6] Ciarlet P., 1988, MATH ELASTICITY VOL, VI
  • [7] Delfour M.C., 2018, Springer INdAM Series, P137
  • [8] Quasistatic Delamination of Sandwich-Like Kirchhoff-Love Plates
    Freddi, Lorenzo
    Roubicek, Tomas
    Zanini, Chiara
    [J]. JOURNAL OF ELASTICITY, 2013, 113 (02) : 219 - 250
  • [9] Quasistatic delamination models for Kirchhoff-Love plates
    Freddi, Lorenzo
    Paroni, Roberto
    Roubicek, Tomas
    Zanini, Chiara
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2011, 91 (11): : 845 - 865
  • [10] Dimension reduction of a crack evolution problem in a linearly elastic plate
    Freddi, Lorenzo
    Paroni, Roberto
    Zanini, Chiara
    [J]. ASYMPTOTIC ANALYSIS, 2010, 70 (1-2) : 101 - 123