Nonparametric Quantile Estimations for Dynamic Smooth Coefficient Models

被引:125
作者
Cai, Zongwu [1 ,2 ]
Xu, Xiaoping [3 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
[2] Xiamen Univ, Wang Yanan Inst Studies Econ, Xiamen, Peoples R China
[3] China Univ Geosci, Dept Stat, Coll Econ & Management, Wuhan 430074, Peoples R China
基金
美国国家科学基金会;
关键词
Bandwidth selection; Boundary effect; Covariance estimation; Kernel smoothing model; Nonlinear time series; Quantile regression; Value-at-risk; Varying coefficients;
D O I
10.1198/016214508000000977
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We suggest quantile regression methods for a class of smooth coefficient time series models. We use both local polynomial and local constant litting schemes to estimate the smooth coefficients in a quantile framework. We establish the asymptotic properties of both the local polynomial and local constant estimators for alpha-mixing time series. We also suggest a bandwidth selector based on the nonparametric version of the Akaike information criterion. along with a consistent estimate of the asymptotic covariance matrix. We evaluate the asymptotic behaviors of the estimators at boudaries and compare the local polynomial quantile estimator and the local constant estimator. A simulation study is carried out to illustrate the performance of estimates. An empirical application of the model to real data further demonstrate the potential of the proposed modeling procedures.
引用
收藏
页码:1595 / 1608
页数:14
相关论文
共 43 条