Exploring Uncertainty Measures in Deep Networks for Multiple Sclerosis Lesion Detection and Segmentation

被引:48
作者
Nair, Tanya [1 ]
Precup, Doina [2 ]
Arnold, Douglas L. [3 ,4 ]
Arbel, Tal [1 ]
机构
[1] McGill Univ, Ctr Intelligent Machines, Montreal, PQ, Canada
[2] McGill Univ, Sch Comp Sci, Montreal, PQ, Canada
[3] McGill Univ, Montreal Neurol Inst, Montreal, PQ, Canada
[4] NeuroRx Res, Montreal, PQ, Canada
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I | 2018年 / 11070卷
基金
加拿大自然科学与工程研究理事会;
关键词
Uncertainty; Segmentation; Detection; Multiple Sclerosis;
D O I
10.1007/978-3-030-00928-1_74
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Deep learning (DL) networks have recently been shown to outperform other segmentation methods on various public, medical-image challenge datasets [3,11,16], especially for large pathologies. However, in the context of diseases such as Multiple Sclerosis (MS), monitoring all the focal lesions visible on MRI sequences, even very small ones, is essential for disease staging, prognosis, and evaluating treatment efficacy. Moreover, producing deterministic outputs hinders DL adoption into clinical routines. Uncertainty estimates for the predictions would permit subsequent revision by clinicians. We present the first exploration of multiple uncertainty estimates based on Monte Carlo (MC) dropout [4] in the context of deep networks for lesion detection and segmentation in medical images. Specifically, we develop a 3D MS lesion segmentation CNN, augmented to provide four different voxel-based uncertainty measures based on MC dropout. We train the network on a proprietary, large-scale, multisite, multi-scanner, clinical MS dataset, and compute lesion-wise uncertainties by accumulating evidence from voxel-wise uncertainties within detected lesions. We analyze the performance of voxel-based segmentation and lesion-level detection by choosing operating points based on the uncertainty. Empirical evidence suggests that uncertainty measures consistently allow us to choose superior operating points compared only using the network's sigmoid output as a probability.
引用
收藏
页码:655 / 663
页数:9
相关论文
共 16 条
[1]  
[Anonymous], ICML
[2]  
[Anonymous], 2008, MIDAS J
[3]  
[Anonymous], 2017, Advances in Neural Information Processing Systems
[4]   Variational Inference: A Review for Statisticians [J].
Blei, David M. ;
Kucukelbir, Alp ;
McAuliffe, Jon D. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2017, 112 (518) :859-877
[5]   Deep 3D Convolutional Encoder Networks With Shortcuts for Multiscale Feature Integration Applied to Multiple Sclerosis Lesion Segmentation [J].
Brosch, Tom ;
Tang, Lisa Y. W. ;
Yoo, Youngjin ;
Li, David K. B. ;
Traboulsee, Anthony ;
Tam, Roger .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2016, 35 (05) :1229-1239
[6]   Longitudinal multiple sclerosis lesion segmentation: Resource and challenge [J].
Carass, Aaron ;
Roy, Snehashis ;
Jog, Amod ;
Cuzzocreo, Jennifer L. ;
Magrath, Elizabeth ;
Gherman, Adrian ;
Button, Julia ;
Nguyen, James ;
Prados, Ferran ;
Sudre, Carole H. ;
Cardoso, Manuel Jorge ;
Cawley, Niamh ;
Ciccarelli, Olga ;
Wheeler-Kingshott, Claudia A. M. ;
Ourselin, Sebastien ;
Catanese, Laurence ;
Deshpande, Hrishikesh ;
Maurel, Pierre ;
Commowick, Olivier ;
Barillot, Christian ;
Tomas-Fernandez, Xavier ;
Warfield, Simon K. ;
Vaidya, Suthirth ;
Chunduru, Abhijith ;
Muthuganapathy, Ramanathan ;
Krishnamurthi, Ganapathy ;
Jesson, Andrew ;
Arbel, Tal ;
Maier, Oskar ;
Handeles, Heinz ;
Iheme, Leonardo O. ;
Unay, Devrim ;
Jain, Saurabh ;
Sima, Diana M. ;
Smeets, Dirk ;
Ghafoorian, Mohsen ;
Platel, Bram ;
Birenbaum, Ariel ;
Greenspan, Hayit ;
Bazin, Pierre-Louis ;
Calabresi, Peter A. ;
Crainiceanu, Ciprian M. ;
Ellingsen, Lotta M. ;
Reich, Daniel S. ;
Prince, Jerry L. ;
Pham, Dzung L. .
NEUROIMAGE, 2017, 148 :77-102
[7]  
Gal Y, 2016, PR MACH LEARN RES, V48
[8]   NON-UNIFORM PATCH SAMPLING WITH DEEP CONVOLUTIONAL NEURAL NETWORKS FOR WHITE MATTER HYPERINTENSITY SEGMENTATION [J].
Ghafoorian, M. ;
Karssemeijer, N. ;
Heskes, T. ;
van Uden, I. W. M. ;
de Leeuw, F. E. ;
Marchiori, E. ;
van Ginneken, B. ;
Platel, B. .
2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, :1414-1417
[9]  
Hernandez C, 2017, 20 S BEHNKE ROBOCUP, V9776, P613
[10]  
Kendall A., 2017, BMVC