Invariants and Chebyshev polynomials

被引:0
作者
Yudin, V. A. [1 ]
机构
[1] Tech Univ, Moscow Power Engn Inst, Moscow 111250, Russia
关键词
lattices; invariants; designs; best approximations; SPHERICAL T-DESIGNS; CUBATURE FORMULAS; LEAST DEVIATION; FINITE-GROUP; APPROXIMATION; ZERO; LATTICE; BALL;
D O I
10.1134/S0081543809060182
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
On different compact sets from a"e (n) , new multidimensional analogs of algebraic polynomials least deviating from zero (Chebyshev polynomials) are constructed. A brief review of the analogs constructed earlier is given. Estimates of values of the best approximation obtained by using extremal signatures, lattices, and finite groups are presented.
引用
收藏
页码:S227 / S245
页数:19
相关论文
共 39 条
[1]  
Akhiezer N. I., 1988, LECT INTEGRAL TRANSF
[2]  
Andreev N. N., 2001, T MAT I STEKLOVA, V232, P45
[3]  
Andreev NN, 2001, INT SER NUMER MATH, V137, P23
[4]  
[Anonymous], 1994, LATTICE METHODS MULT
[5]   SOME SPHERICAL T-DESIGNS [J].
BANNAI, E .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1979, 26 (02) :157-161
[6]  
BANNAI E, 1980, P SYMP PURE MATH, V37, P465
[7]  
BANNAI E, 1984, CONT MATH, V34, P95
[8]  
BECKERS M, 1993, INT S NUM M, V112, P13
[9]  
BERNSTEIN SN, 1954, COMPLETE SET WORKS, V2
[10]  
BERNSTEIN SN, 1952, COMPLETE SET WORKS, V1